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GUTs and their motivation UNlﬁr%ﬁlY\l

Grand Unified Theory (GUT):
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Motivation: Q (GeV)
* Gauge coupling unification Figure 1: Running couplings of the SM meet
e Explanation for charge quantization at the GUT scale.

e Reduce number of dof of SM



Why question proton stability? UNI\?!IE.\F%I%IY\I

Why do we care about proton stability?
e Predicted by most GUT candidates

P
d e One of the few accessible GUT tests
Other possibilities to test GUTs?
e Electric dipole moments
e Neutrino properties
Figure 2: Feynman graph for p — et 70, e Magnetic monopoles, e.g. in Pati-Salam
X is a GUT gauge boson. model SU(4)c x SU(2)1, x SU(2)g which

predicts stable proton



Current stability limits (2017) UNI\I}E-\%%I
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Figure 3: Current and future stability limits and excluded models.



Experimental tests of proton stability UNI\?@EIS-II%IY\I

Two different approaches:

Recoil method Decay products method

Measure recoil of remaining nucleus Detect decay products

+ Observe all decay channels + Lower background

— Higher background + Much bigger quantity of matter
observable

(—) Specialized on decay channel



Historical example: Homestake Mine, South Dakota, 1980 UNI\?@F?SI:IIEIY\I

Nobel prize 2002 for solar neutrinos

Cerenkov detectors, 1600 m deep,
150t water

Search for up-moving muons from
p— e+770, vKT, ...
KT, ... — ,uiX

For SU(5): BR(p — u*X) ~ 0.27
e Limit in 1980: 7, > 2- 1030 yr

Figure 4: Homestake Mine in 1900.



Expected count rate UN|\9!IE'\F%||%IY\I

Water contains about 3 - 10%° protons per liter.

_ 2.1029 _protons  BR(p—etX)
~ R=3-10 ton water Tp

&

where ¢ is the detection efficiency of the experiment

Example:
e ="T75%, BR(p — ™ X) = 75%, 1, = 1031 yr

= R~0.02t 'yr!

Events are very rare, large tanks and long observations are necessary. Background
subtraction gets very important.



Super-Kamiokande UNl\Ii\IIE'\F({:gl%IY\I

Figure 5: Inside Super-Kamiokande: 55kt of ultrapure water, 13000 photo multipliers.




Super-Kamiokande UNl\Ii\IIE'\F({:gl%IY\I

gamma

“ / Event selection:
Positron a0
Q- . e Fully contained
/" 'Proton .
\ e 2 or 3 rings
- e All rings are EM showers

e m, o = 85— 185 MeV

No p-decay electrons
Mot = 800 — 1050 MeV
Prot < 250 MeV

Figure 6: Expected Cerenkov emission and
corresponding event display.



Naive calculation for proton lifetime in SU(5)
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Corrections to calculation of My UN|0[’5'\[({:§I|%IY\I

M x should be scaled down by two orders of magnitude:

o (M) ~ 135: factor of ~ 10
e Two-loop corrections of RGE: factor of ~ 4
e Renormalization schemes MOM or MS up to order g3: factor of ~ 3

e (corrections due to additional heavy or light particles in extended models)

— My =6-(1.5)*10" GeV
where (1.5)T is due to uncertainty in A. a5 = 0.0244 & 0.0002 nearly unchanged.
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Constructing the effective theory UNI\?!IE.\F%I%IY\I

Assume only one family, neglect mixing and go over to effective 4-fermion Fermi theory:

SU(5 4G —C — a | = ey —(E —c ey
_‘Ceff( )= Ve [(eam%”v”u/i) (2efv,d} + e5y.d) — (eamu;y“d@ (I/R’}/'udR):|+ h.c.

where G/v/2 = g2/(8M2). It can be directly reasoned that:

e B and L but B — L conserved
e AS=0o0r AS=—-AB

= e.g. p— vm allowed, but n — e K~ forbidden.
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Comparison with SO(10) UN|\9|IEI\F({:§||%IY\I

Decompose Lagrangian into operators:

200 — f[20++(9++(’) }"-hc
Ezf(?(lo) _L-SleJ(5) f [20 n _|_(') + + Oy } + h.c.

The operators O have certain symmetries, e.g. strong isospin and parity.

1+ 72 2/M3
I(p—v°X) wh = X
5 (p = v°X) where r M + 102

~ T(p—etX)>

SU(5): Mxs — oo < r = 2. Most protons decay into positrons.
SO(10): r < 2. Decay into neutrinos gets more frequent.
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Full calculation of proton lifetime Hepaled)

General formula for proton decay width:

a5 o) (272) e
= ML 3

where [1(0)|* ~ 2.0 - 1073 GeV and the anomalous dimension |A|* ~ 10 is due to the
tree-level effective Lagrangian. Values for the phase space A\ are model dependent due
to unknown quark masses.

1
= == 12-100yr
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Second look on current limits UNI\?I?RIS-IIEIY\I
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Figure 7: Current and future stability limits and excluded models.
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Future detectors UNI\?!IE'\F({:QEIY\I

Future experiments to measure m,, CP violation, new v, etc.:

Hyper-Kamiokande DUNE (formerly LBNE)

Successor of Super-Kamiokande Deep Underground Neutrino Experiment

° mH o :2OmH o = 1000 kt

mRUNE = 34 kt, LArTPC
e 650 m underground

1500 m underground

e Well suited for p — et 7% which is Well suited for p — K™ which is
dominant in non-SUSY GUTs dominant in SUSY GUTs

e Start: 2025 Start: 2024
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Thank you for your attention.
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