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Outline of this talk

1. Motivation and background
2. Dark sectors and their thermal
evolution after a phase transition

3. The dark photon model
4. Conclusion

[Camille Flammarion, 1888]
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Motivation and background



What do we know about our Universe?

[Pablo Carlos Budassi, 2020]

From CMB anisotropies: ΛCDM model

• Isotropic and homogeneous
• 13.8 billion years old
• Expands with a rate of
68 kms−1Mpc−1

• 95 % of today’s energy content
is dark!?

 What lies beyond the surface of
last scattering?
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Gravitational waves as a “new” messenger

• Observed > 50 compact
binary mergers in five years

• Sensitivity will increase
considerably with start of
LISA, Einstein Telescope, etc.

 What will the stochastic
gravitational wave
background look like? [LIGO, Virgo & KAGRA Collaboration, 2020]
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Cross-over and first-order phase transitions
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Cross-over phase transition

The scalar field “rolls down” from φ = 0
to φ = v, when the bath cools from high
temperatures to low temperatures.
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First-order phase transition

The scalar field tunnels to the true
potential minimum (φ 6= 0) to minimize

its action (∼ free energy).
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Gravitational waves from first-order phase transitions

Bubbles of the new phase
nucleate and eventually collide...

φ 6= 0

φ 6= 0
φ = 0
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... giving rise to a stochastic gravitational wave
background.
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Objective of my thesis

We have seen that
• Primordial GWs could be used for
“listening” beyond the CMB

• First-order phase transitions emit
gravitational wave signals

• Majority of our Universe is “dark”
 What kind of dark sector could

produce observable GW signals?

Dark sector: particle bath without
thermal contact to SM particles:

TDS = ξ TSM

Previous work by Breitbach et al.
showed that cold (ξ < 1) dark sectors
produce weak signals...

8

Can hot (ξ > 1) dark sector phase transitions
emit observable GW signals?

What happens when the dark sector
finally decays to SM particles?
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Can hot (ξ > 1) dark sector phase transitions
emit observable GW signals?

What happens when the dark sector
finally decays to SM particles?



The thermal history of a dark sector



Long-lived dark sector evolution after a phase transition
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Describing the dark sector in equilibrium

For several dark sector species in thermal equilibrium: can define effective DOFs

ρtot(TSM) =
[
gSMeff,ρ(TSM) + gDSeff,ρ(TSM) ξ

4(TSM)
] π2

30
T4
SM

stot(TSM) =
[
gSMeff,s(TSM) + gDSeff,s(TSM) ξ

3(TSM)
] 2π2

45
T3
SM

As entropy is conserved separately in the two baths, the temperature ratio follows

ξ(TSM) = ξ̃

(
gSMeff,s
g̃SMeff,s

)1/3 (
g̃DSeff,s
gDSeff,s

)1/3

When SM particles annihilate , ξ decreases.
When dark sector DOF decrease , ξ increases.
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Describing the dark sector in equilibrium

10−3100103106

TSM / GeV
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gSM
eff

gSM
eff,s

gSM
eff,ρ

10−3100103106

TSM / GeV

gtot
eff for ξ = 2

gtot
eff,s

gtot
eff,ρ

Example: Thermal evolution of a hot (ξ = 2) dark sector consisting of a dark
photon (mDP = 106 GeV) and a dark Higgs boson (mDH = 104 GeV).
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The out-of-equilibrium decay of a dark mediator

Evolution of the lightest dark sector state
(“mediator”) after chemical decoupling:

ρ̇med ' −3 ζ H ρmed − Γ ρmed

with

ζ = 1 +
Pmed
ρmed

=

4/3 rel.

1 non-rel.

Three phases: Relativistic, non-relativistic
and decaying mediator

10−10 10−8 10−6 10−4 10−2 100

t/τ

100

101

102

103

I II III

ρmed a3 / GeV4

Boltzmann eq.

Approximation
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The out-of-equilibrium decay of a dark mediator

Number-changing processes of the
mediator lead to a “cannibalistic”
phase with µmed = 0. Therefore, the
unique function ρmed(smed) exists.
We found:

ζ =


d ln ρmed
d ln smed

3 → 2 efficient

1 3 → 2 inefficient

During cannibalism, ζ goes smoothly
from 4/3 to 1.

Four phases: Relativistic, cannibalistic,
non-relativistic and decaying mediator
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t/τ
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102

103

I III IVII

ρmed a3 / GeV4

10−10 10−7 10−4 10−1

t/τ

100
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103

I III IVII

smed a3 / GeV3
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The out-of-equilibrium decay of a dark mediator
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ΛCDM
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t/τ

100
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III IV V VIIII

SSM/Scd
SM

The Friedmann equation, ρ̇med(t),
gSMeff,s/ρ(TSM), ρrad(TSM), and TSM(t)
provide a set of coupled ODEs.

 Six phases:
I Relativistic mediator
II Cannibalistic mediator
III Non-relativistic mediator
IV Early matter domination
V Entropy injection
VI Mediator decay
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The out-of-equilibrium decay of a dark mediator

Dark sector parameters:
• SM temperature T cd

SM at
chemical decoupling

• Mediator mass mmed

• Temperature ratio ξcd at
chemical decoupling

• Effective 3 → 2 coupling α32

Define dilution factor:

DSM =
Safter decaySM

Sbefore decaySM
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α
32
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Parametrization of the GW signal

Assuming strong1 phase transitions, the GW spectrum can be parameterized by

h2 ΩGW(f ) '
O(10−6)

D4/3

(
α

1 + α

)2 ( β

H

)−2 3.8 (f /fp)2.8

1 + 2.8 (f /fp)3.8 , where

D ≡
gSM,neff,s

gtot,neff,s
DSM and fp '

O(µHz)

D1/3

(
β

H

) (
Tn
SM

100GeV

)

 GW spectrum fixed by the transition strength α , the inverse time scale β/H ,

the nucleation temperature Tn
SM and the dilution factor D

1This is only to get an intuition, the actually performed calculations are more involved
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Parametrization of the GW signal
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The dark photon model



The dark photon model
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VT + VdaisyVT + Vdaisy

TDS = 0.5 GeV

0 1

φ / TeV

TDS = Tc
DS

0 1

φ / TeV

TDS = 0

Add a U(1)D to the SM gauge groups. Its gauge boson, the “dark photon”, gets
massive when a “dark Higgs” obtains φ 6= 0. Effective potential controlled by the
tree-level VEV v , dark Higgs quartic coupling λ and gauge coupling g .
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Strength and time scale of the transition

Analyze the phase structure and determine the strength α and inverse time scale
β/H . Vary quartic coupling λ and gauge coupling g to identify region of strong
and slow transitions.
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The temperature ratio’s impact on α and β/H

100 101

ξn

10−1

100

101

102

103

104

Inverse timescale β/H

Transition strength α

Total DOFs gtot,n
eff,ρ

Phase transition parameters

The transition strength α increases ∝ ξ4
n,

but only until the Universe is completely
dominated by the dark sector. Then, the
relative temperature difference becomes
irrelevant. The inverse timescale is
virtually independent of ξn.
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The temperature ratio’s impact on the GW signal
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The dark Higgs lifetime’s impact on the GW signal
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The vacuum expectation value’s impact on the GW signal
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LISA benchmark point, v = 2 TeV
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Signals observable for ξn > 2, if dark sector not too long-lived, that is τ . 1µs.
Otherwise, signals too weak/diluted. For τ . 1ns, assumption of non-relativistic
decays breaks and inverse decays become relevant, thermalizing the two baths.
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Summary
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• Hot dark sectors can
produce strong first-order
phase transitions

• Parts of the U(1)D model
parameter space will be
testable by LISA (and ET)

• If the mediator species
becomes too long-lived, its
out-of-equilibrium decay
will dilute the signal
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Conclusions

• Could answer the question of how the dark sector temperature alters the
produced gravitational wave signals of a first-order phase transition!

• Extension and improvement of literature on dilution through
out-of-equilibrium decays after possible mediator cannibalism

• Publication in ca. one month, including code for model parameter scans,
calculating effective potentials, dilution factors and signal-to-noise ratios

• Ignored bubble wall effects by assuming sufficiently strong transitions 
further work necessary. Why not add a DM candidate to the model?

• The first GW detection was only five years ago, last year NANOGrav detected
hints for GW background. We live in exciting times!
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Thank you very
much for your
attention!

Please feel free to ask me
about anything, if you have
questions.
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First-order phase transitions in thermal field theory

To demonstrate construction of Veff(φ,T), take the toy-model Lagrangian...

L =
1
2
(∂µφ) (∂

µφ)− Vtree(φ)

with Vtree(φ) = −1
2
µ2φ2 +

λ

4
φ4

... and consider all 1-loop 1-PI graphs:

V 1−loop
eff,Φ (φ) =

φ2 + φ4 + φ6 + . . .


p=0
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First-order phase transitions in thermal field theory

And calculate 1-loop effective potential with m2(φ) = ∂2
φVtree(φ) = −µ2 + 3λφ2

Veff(φ,T) =
1
2

∫ d4kE
(2π)4 log

[
k2
E + m2(φ)

]
with k0

E being 2π
T
-periodic

=
T
2
∑

n

∫
k
log

[(
2πn
T

)2
+ E2

k

]
with Ek =

√
k2 + m2(φ)

=

∫
k

[
Ek
2

+ T log
{

1 − e−Ek/T
}]

= VCW(φ) + VT(φ,T)

Interpretation: Vtree is the classical energy density contained in a background
field φ, VCW(+VT) is the vacuum energy density of a quantum field living in this
background, which is completely analogous to the zero-point energy of a
harmonic oscillator (in a thermal bath)
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First-order phase transitions in thermal field theory

VT =

∫
k

T log
{

1 − e−Ek/T
}

= −π2T4

90
+

T2m2(φ)

24
− Tm3(φ)

12π
+ ...

However, around Tc , Veff is dominated by
> 1-loop effects. “Daisies” dominate:

Vdaisy = − T
12π

[(
m2(φ) + Π(T)

)3/2 − m3(φ)
]

And cancel the potential barrier in Veff. But:
Transversal gauge boson component doesn’t
acquire Π(T).  Gauge bosons can save
potential barrier and thus FOPTs.

0 v

φ

V e
ff
(φ

)
−

V e
ff
(0

)

First-order phase transition
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First-order phase transitions in thermal field theory

Summary:

V 1-loop
eff (φ,T) = Vtree(φ)+ VCW(φ) + Vct(φ) + VT(φ,T) + Vdaisy(φ,T)

Coleman-Weinberg
potential and its
counter-terms

1-loop thermal
corrections

Daisy corrections,
dominate at Tc

How to get a thermal FOPT?

• Need scalar charged under gauge group with massive gauge bosons
• Dominant Vtree + VCW contributions can always destroy potential barrier,
though as in SM with too high mh forbidding FOPT
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First-order phase transitions in thermal field theory

V 1−loop
eff (φ,T) = Vtree + VCW + Vct + VT + Vdaisy

has the individual contributions

VCW(φ) =
∑

x
ηx nx

m4
x(φ)

64π2

[
ln

m2
x(φ)

Λ2 − Ca

]
,

VT (φ,T) =
T4

2π2

∑
x

ηx nx Jηx

(
m2

x(φ)

T2

)
,

Vdaisy(φ,T) = − T
12π

∑
b

nLb
[(

m2(φ) + Π(T)
)3/2

b −
(
m2(φ)

)3/2
b

]
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Thermal functions
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Bubble expansion

Euclidean action of scalar field

S [φ] =

∫
d4xE

[
1
2

(
∂φ

∂τ

)2
+

(∇φ)2

2
+ Veff(φ)

]
Minimizing for O(4)-case gives

d2φ

dρ2 +
3
ρ

dφ
dρ

= V ′
eff(φ)

At finite T and in real space:

d2φ

dr2 +
2
r

dφ
dr

= V ′
eff(φ,T)

Can be solved by overshoot-undershoot method
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Over-undershoot method

It is possible to transform the boundary value
problem into an initial value problem. Adjust the
starting point φ0 until φ(r → ∞) = 0 and φ

comes to halt exactly at the local maximum of
−Veff at φ = 0
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Bubble formation and thermal tunneling

Nucleation rate: Γ = Ae−S4 with

S4 =

∫
1
2

(
dφ
dτ

)2
+

1
2
(∇φ)2+Veff(φ)d4xE

and A ∼ T4. Extremalization yields KG
equation with classical potential source:

d2φ

dτ2 +∆φ =
dVeff
dφ

with b.c. φ(ρ → ∞) → 0 and

φ′(ρ = 0) = 0 where ρ ≡
√
τ2 + |x|2.

Solutions typically O(4) symmetric:

d2φ

dρ2 +
3
ρ

dφ
dρ

=
dVeff
dφ

In 3-space: r = |x| =
√
ρ2 + c2t2  

Nucleation and expansion with v → c

t

|x |

R
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Temperature dependence of potential minima and bubble profile

T
0

v

T = Tn

φ(T)

r
0

φmax
r =
√

R2 + t2

φ(r)
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Nucleation criterion

T

S 3
(T

)/
T

Γ(T)/H4(T) ∼ 1

Tn Tc

The nucleation condition Γ(Tn)H−4(Tn) = 1 gives

S3(T)

T

∣∣∣∣
T=Tn

∼ 146 − 2 ln

(
gtoteff,ρ(Tn)

100

)
− 4 ln

(
Tn

100GeV

)
Can be solved by repeated evaluation of S3/T and subsequent minimization.
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GW parameter calculation

Radiation energy density at nucleation

ρR =
π2

30

(
gSM,neff,ρ + gDS,neff,ρ ξ

4
)
(Tn

SM)
4

Transition strength

α =
1
ρR

(
−∆V + Tn

DS
∂∆V
∂T

∣∣∣∣
Tn
DS

)
Inverse time scale

β

H
= Tn

DS
dSE(T)

dT

∣∣∣∣
Tn
DS

Critical transition strength for runaway bubbles

α∞ =

(
Tn
DS
)2

ρR

(∑
i=bos

ni
∆m2

i
24

+
∑
i=fer

ni
∆m2

i
48

)
26



SGWB model

ΩGW(f ) =
1
ρc

dρGW(f )
d log f

'
∑

N ∆

(
κα

1 + α

)p (H
β

)q
s(f )

Scalar field Ωφ Sound waves Ωsw Turbulence Ωturb

N 1 1.59 · 10−1 2.01 · 101

κ κφ κsw εturbκsw

p 2 2 3
2

q 2 1 1

∆
0.11v3

w

0.42 + v2
w

vw vw

fp
0.62β

1.8 − 0.1vw + v2
w

2β√
3vw

3.5β
2vw

s(f ) 3.8(f /fp)2.8

1 + 2.8(f /fp)3.8 (f /fp)3
(

7
4 + 3(f /fp)2

)7/2
(f /fp)3

(1 + f /fp)11/3[1 + 8π(f /H )] 26



Experimental sensitivities

10−3 100 103

f / Hz

10−17

10−14

10−11

10−8

10−5

h2 Ωeff( f )

B-DECIGO

DECIGO

BBO

LISA

ET

10−3 100 103

f / Hz

10−17

10−14

10−11

10−8

10−5

h2 ΩPLI( f )
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Effective degrees of freedom

gx
eff,ρ(Tx) ≡

ρx(Tx)

ρrelbos(Tx)
∣∣
g=1

= gx
15
π4

∫ ∞

zx

dux
u2

x
√

u2
x − z2

x
eux ± 1

,

gx
eff,P(Tx) ≡

Px(Tx)

Prel
bos(Tx)

∣∣
g=1

= gx
15
π4

∫ ∞

zx

dux

(
u2

x − z2
x
)3/2

eux ± 1
,

gx
eff,s(Tx) =

3 gx
eff,ρ(Tx) + gx

eff,P(Tx)

4
,

where ux =
√

m2
x + p2/Tx and zx = mx/Tx . Sum over all SM and DS species:

gtoteff,ρ = gSMeff,ρ(TSM) + gDSeff,ρ(TSM) ξ
4(TSM)

gtoteff,s = gSMeff,s(TSM) + gDSeff,s(TSM) ξ
3(TSM)
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Mediator cannibalism

Conserved comoving mediator entropy smed a3 = const gives

d ln smed
dt

=
d ln smed
d ln ρmed

ρ̇med
ρmed

= −3 H (t) ,

from which follows that

ρ̇med = −3 d ln ρmed
d ln smed

H (t) ρmed(t) .

For µmed = 0, one can find function ρmed(smed), independent of particle species:

d ln ρmed
d ln smed

=
dρmed
dsmed

smed
ρmed

=
dρ̄med
ds̄med

s̄med
ρ̄med

=
d ln ρ̄med
d ln s̄med

=
d ln ρ̄

d ln s̄

with s̄med ≡ 2π2 smed/(gmed T3
DS) and ρ̄med ≡ 2π2 ρmed/(gmed T4

DS).
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Mediator cannibalism

That yields

ρ̇med ' −3 ζ H ρmed − Γ ρmed

with

ζ(t) =


d ln ρ̄

d ln s̄
(ρmed) for Γnc(t) ≥ H (t)

4/3 for Γnc(t) < H (t), t < t̃

1 for Γnc(t) < H (t), t ≥ t̃

,

where t̃ = 7 tcd (T cd
DS/mmed)

2 denotes the time when the mediator gets
non-relativistic. Number changing process rate is approximated by

Γnc ' Γ32 ' 〈σ32 v2〉n2
med
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Mediator cannibalism

The averaged cross section reads

〈σ32 v2〉 =
25

√
5α3

32
3072π m5

med
+O

(
TDS

mmed

)
.

where

(4π α32)
3 ≡

(κ3
m

)2
[(κ3

m

)2
+ 3κ4

]2

for a potential V (φ) =
m2

2
φ2 +

κ3
3!

φ3 +
κ4
4!

φ4. In our model: α32 = 2.3λ.
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Coupled set of ODEs underlying the entropy injection

ā′ =
ā
θH

√
r +

fmat
ā3 +

frad
ā4

γ

γcd

S
G1/3 ,

S′ =
r ā4

frad
G1/3 γcd ,

r′ = −r − 3
ā′

ā
ζ r ,

G′ = −
3
4

Tcd
SM G Ĝ
S3/4 ā

4S ā′ − S′ ā
Tcd
SM Ĝ S1/4 + 3G4/3ā

,

γ′ = γ̂ Tcd
SM

3G ā S′ − 12G ā′ S − 4G′ ā S
12G4/3 S3/4 ā2 .

with initial condition ācd = Scd = rcd = Gcd = 1 and
γcd .

• Normalized scale factor ā = a/acd

• Characteristic time scale θH =
√

3 m2
Pl Γ

2ρcdmed

• Normalized mediator energy density
r = ρmed/ρ

cd
med

• Normalized initial DM density fmat = ρcdDM/ρ
cd
med

• Normalized initial radiation energy density
frad = ρcdrad/ρ

cd
med

• Normalized DOFs γ = gSMeff,ρ/gSMeff,s
• Normalized DOFs G = gSMeff,s/gSM,cdeff,s

• Normalized SM entropy S =
(

SSM/ScdSM
)4/3
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Redshift and dilution of the GW background

After its emission, the GW signal gets red-shifted:

h2 ΩGW(f ) = Rh2 ΩnGW

(
a0
an

f

)

Energy density:

Rh2 ' 2.4 · 10−5

D4/3
SM

(
gSM,0eff,s

gSM,neff,s

)4/3 gtot,neff,ρ
2

Frequency:

a0
an

= D1/3
SM

(
gSM,neff,s

gSM,0eff,s

)1/3
Tn
SM

T0
SM
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Parametrization of the GW signal

Transition strength:

α =
ε

ρnrad

relates the latent heat ε of the transition
with the energy density ρnrad of the
surrounding heat bath. For fixed Tn

DS:
ρnrad ∝ ξ−4

n . The transition strength thus
grows ∝ ξ4

n!
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Parametrization of the GW signal

Inverse time scale:
The computation of β/H is complicated,
but shows no relevant dependence of
the temperature ratio between the
sectors. Larger β/H indicate fast
transitions. In that case, many small
bubbles collide, resulting in weak signals
at high frequencies.

10−22

10−20

10−18

10−16

10−14

10−12

10−10

10−8

h2 Ω
G

W
(

f)

α = 10−2

α = 10−1

α = 100

β/H = 102

β/H = 103

β/H = 104

10−5 10−3 10−1 101

f / Hz

10−22

10−20

10−18

10−16

10−14

10−12

10−10

10−8

h2 Ω
G

W
(

f)

10−5 10−3 10−1 101

f / Hz

28



Parametrization of the GW signal

Nucleation temperature:
Keeping Tn

DS fixed, a larger temperature
ratio ξn at nucleation leads to a lower
Tn
SM. This corresponds to lower peak

frequencies.
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Parametrization of the GW signal

Dilution:
The redshift to lower frequencies and
signals strengths increases with the
dilution factor. D grows with the
temperature ratio ξn, as more energy is
injected into the SM bath from the dark
sector. Unlike DSM, D saturates for high
temperature ratios.
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The U(1)D model in detail

Lagrangian:

L ⊃ |DµΦ|2 + |Dµ H |2 − 1
4

B′
µν B′µν − ε

2
B′
µν Bµν − V (Φ,H ) ,

DµΦ =
(
∂µ + i g B′

µ

)
Φ ,

Vtree(Φ,H ) = −µ2 Φ∗Φ+ λ (Φ∗Φ)2 − µ2
H H † H + λH (H † H )2 + λp (Φ

∗Φ) (H † H ) .

Mass spectrum:

m2
(h, φ)(h, φ) =

−µ2
H + 3λH h2 +

λp
2
φ2 λp h φ

λp h φ −µ2 + 3λφ2 +
λp
2

h2

 ,

m2
G0,G+(h, φ) = −µ2

H + λH h2 +
λp
2
φ2 ,

m2
ϕ(h, φ) = −µ2 + λφ2 +

λp
2

h2 . 30



The U(1)D model in detail

For λp, ε → 0 and µ2 = λ v2, the field-dependent dark Higgs and dark photon
masses are given by

mDP = g φ T=0
= g v , mDH =

√
2λφ T=0

=
√

2λ v .

The corresponding Debye masses are

ΠΦ(TDS) =

(
λ

3
+

g2

4

)
T2
DS , ΠL

A′(TDS) =
g2

3
T2
DS .

• Quartic dark Higgs coupling: λ
• U (1)D gauge coupling: g
• Dark Higgs lifetime: τ

• Dark Higgs VEV: v = µ√
λ

• Temperature ratio: ξn = TDS
TSM

∣∣∣
n
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Signal-to-noise ratios for LISA and the ET

Compute the overlap of the signals h2 ΩGW(f ) and expected sensitivities h2 Ωobs(f )
and weight it with the duration of the observation tobs to obtain a signal-to-noise
measure:

ρ2 = tobs
∫ fmax

fmin
df
[

h2 ΩGW(f )
h2 Ωobs(f )

]2

If ρ exceeds a certain threshold value for a given signal, the signal is observable.

To analyze the impact of ξn and τ on the observability of the signals produced by
our model, consider the benchmark points

Benchmark point λ g v
LISA 1.5 · 10−3 0.5 2 TeV
ET 1.5 · 10−3 0.5 10PeV
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ET benchmark point, v = 10PeV

100 101

ξn

10−18

10−16

10−14

τ
/

s

D

100 101
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HDH τ < 1

log10 SNRET
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9

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Same picture as for LISA, but weaker signal-to-noise ratios due to steeper ET
sensitivity curves. Highest observability for hot and short-lived dark sectors.
Signals observable for ξn > 2 and 10−17 s . τ . 10−14 s.
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Final temperature independent of all input parameters except lifetime
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Our extensions to CosmoTransitions

Structure:

my_scan.py

scanner.py

my_model.py

generic_potential.py

geff.py dilution.py transitionFinder.py

observability.py

Example output:
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 / 
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V

log10 
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 / 
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V

log10 TSM
nuc / GeV
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 / 
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V

log10 D
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V
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