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Kurzfassung

In dieser Arbeit wird die Freeze-In-Produktion Dunkler Materie untersucht, wel-
che aus sterilen Neutrinos besteht. Das verwendete Modell basiert auf einem
Standardmodell-Neutrino und einem sterilen Neutrino, welches über den Typ-I-
Seesaw-Mechanismus die Masse des aktiven Neutrinos generiert. Die zum Prozess
ℎ → ̄𝜈𝑁 zugehörige Boltzmann-Gleichung wird analytisch und numerisch gelöst, um
den beobachteten Anteil 𝛺DM ≃ 0, 258 der kalten Dunklen Materie an der Ener-
giedichte des Universums zu erklären. Es wird gezeigt, dass die dadurch möglichen
sterilen Neutrinos eine Masse von 239, 3 keV oder ca. 120 keV unter der Masse des
Higgs-Bosons haben müssen. Außerdem wird gezeigt, dass beide Optionen jedoch
aufgrund des Strahlungszerfalls 𝑁 → 𝛾𝜈 nicht als Erklärung für die gesamte Dunkle
Materie dienen können.

Abstract

In this thesis, the freeze-in production of sterile neutrino dark matter is investigated
in a model with one active and one sterile neutrino species which is expected to
account for the active neutrino’s mass due to the type I seesaw mechanism. The
corresponding Boltzmann equation for the process ℎ → ̄𝜈𝑁 is solved analytically
and numerically to yield the observed cold dark matter density 𝛺DM ≃ 0.258. It
is shown that the possible sterile neutrinos are expected to have a mass around
239.3 keV or about 120 keV below the Higgs mass. Eventually, both options are
shown to be unfeasible because of the radiative decay 𝑁 → 𝛾𝜈.
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1 Introduction

The standard model (SM) of particle physics is a quantum field theory developed
in the latter half of the 20th century. Although it has achieved huge success by
explaining three of the four fundamental interactions and various experimental
observations, it is still far from being a complete theory of nature: two of its main
problems are the evidence for dark matter (DM) and neutrino oscillations.

During the last few decades, strong evidence was found that there must be an as yet
unknown type of matter, which is only observable by its gravitational interactions
with ordinary matter. Even though DM accounts for about 80% of matter in the
Universe and about 25% of its energy density, there is still no indication what DM
might consist of on a particle level. The SM does not contain a particle species which
could account for the measured effects in cosmology and astrophysics. However, the
assumption that DM exists seems to be well-founded: The existence of halos of DM
around galaxies would not only explain the often cited rotation curves of galaxies (see
figure 1.1) and their stability, but also the observed effects of gravitational lensing
of galaxy clusters as well as the angular power spectrum of the cosmic microwave
background (CMB). The latter was measured by the space observatory Planck and
provided a basis for our current standard model of cosmology, the concordance or
Lambda-CDM model.

The SM states that all three currently assumed neutrino families are massless, which
forbids a mixture between their flavor and mass eigenstates. This neutrino mixing
was observed by several experiments, however, which were recognized with the Nobel
Prize in Physics in 2015. Hence, we can no longer assume that neutrino masses
vanish, but have to account for their tiny mass scale, which is millions of times
smaller than that of other elementary particles. One theoretical concept for solving
this is the seesaw mechanism. In its simplest version, the introduction of sterile,
right-handed neutrino fields with suitable values for their Yukawa couplings and
masses into the Lagrangian density of the SM yields a possibility to explain the
order of magnitude of the neutrino masses. This might be less justified than the
postulation of DM, since it postpones the problem of small neutrino masses to a
lack of explanation for their Yukawa couplings and the newly introduced masses.
Nevertheless, this argument can be weakened. If the additionally required Majorana
mass terms in the Lagrangian density of the SM did not occur, a new physical
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1 Introduction

Figure 1.1: Characteristic flat rotation curve of the spiral galaxy NGC 3198 as
measured by van Albada et al. in 1985 [1]. The graph labeled “disk” depicts the
expected rotation curve if all of the galaxy’s mass were accumulated in visible stars.
The graph denoted by “halo” is a fit for the dark matter halo as a function of
distance from the galaxy’s center, needed to generate the observed rotation curve
above.

law which forbids their existence would be needed. Therefore, the insertion of
right-handed neutrinos appears to be better founded than previously thought.

An obvious question one has to ask after introducing these extra neutrinos into
the SM is whether this extension can be used as a solution for other problems as
well. This bachelor’s thesis investigates the question if the type I seesaw mechanism
can also explain the origin of dark matter. For the time being, this seems to be
possible, given that right-handed neutrinos are massive, electrically uncharged and
cosmologically stable. To simplify the model for a first survey, it is instrumental
to reduce the number of active and sterile neutrino families to one and to solely
consider the decay of the Higgs boson ℎ → ̄𝜈𝑁, where 𝑁 denotes the right-handed
neutrino.
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2 Theoretical Background

The following section provides the theoretical background necessary for understand-
ing the calculations and argumentation carried out in this bachelor’s thesis and
is based on the lecture “Cosmology, quantum cosmology and gravitational waves”
held in the fall semester 2017 at TU Dortmund university. However, if not indi-
cated differently, the listed definitions and reasoning can also be reviewed in most
introductory pieces on cosmology, e.g. [2], while section 2.3 relies on [3] and section
2.5 relies on [4]. Throughout the calculations, natural units are used, in which
𝑐 = ℏ = 𝑘B = 1.

2.1 The Concordance Model

The Lambda-CDM1 or concordance model is currently the most accepted model
of Big Bang cosmology, since it is the theory with the least number of parameters,
able to explain the CMB anisotropies, the distribution of galaxies, the abundances
of light elements and the accelerated expansion of the Universe. It is based on
the cosmological principle, which states that the spatial distribution of matter
is homogenic and isotropic when viewed on a large enough scale, and assumes
that general relativity is the correct mathematical description for gravity. The
cosmological principle is consistent with the highly isotropical CMB as measured by
the Planck mission in 2016.

Solving the Einstein equations with these assumptions yields the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric:

d𝑠2 = d𝑡2 − 𝑎(𝑡)2 ( d𝑟2

1 − 𝜅𝑟2 + 𝑟2d𝛺) . (2.1)

The parameter 𝜅 ∈ {−1, 0, 1} describes the curvature of space-time (referring to
hyperbolic, Euclidean and elliptical space) and 𝑎(𝑡) is called the “scale factor”, since
it parameterizes the metric expansion of space.

1“Lambda-CDM” denotes the assumed existance of vacuum energy and cold dark matter.
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2 Theoretical Background

It can be shown that the cosmological principle directly requires the energy-
momentum tensor to take the form

(𝑇 𝜇𝜈) = diag(𝜌, 𝑝, 𝑝, 𝑝) (2.2)

at every point in space-time. Inserting this into the 00 component of the Einstein
equations leads to the first Friedmann equation

𝐻(𝑡)2 ≡ ( ̇𝑎(𝑡)
𝑎(𝑡)

)
2

= 8𝜋𝐺
3

𝜌 − 𝜅
𝑎(𝑡)2 , (2.3)

where 𝐻(𝑡) is the Hubble parameter, while the 𝑖𝑗 components lead to the second
Friedmann equation

̈𝑎(𝑡)
𝑎(𝑡)

= −4𝜋𝐺
3

(𝜌 + 3𝑝). (2.4)

Using both of the Friedmann equations (2.3) and (2.4), it is easy to show a third
useful relation

̇𝜌 = −3𝐻(𝑡)(𝜌 + 𝑝) (2.5)

and to conclude that the Universe must have been hot and dense at its beginning
(often referred to as the “Big Bang”). Hence, it is appropriate to assume that in the
early Universe the energy density 𝜌 and the pressure 𝑝 related to an equation of
state corresponding to relativistic particles (i.e. radiation): 𝑝 = 1

3𝜌. Substituting
this condition into equation (2.5), one obtains

𝜌radiation ∝ 𝑎(𝑡)−4. (2.6)

Integrating the first Friedmann equation (2.3), using this proportionality and ne-
glecting the curvature term, leads to

𝐻(𝑡) = 1
2𝑡

, (2.7)

which will be used for the calculations in chapter 3.

The current Hubble parameter (called Hubble constant) 𝐻0 is typically presented
in units of the dimensionless constant ℎ
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2.2 Thermodynamics of the Early Universe

𝐻0 = 𝐻(𝑡0) = 100ℎ km
s Mpc

, (2.8)

and it is convenient to define the following parameters, where the sums over 𝑖 imply
a distinction between different kinds of matter or energy, i.e. radiation, vacuum
energy as well as baryonic and dark matter:

𝜌crit(𝑡) ≡ 3𝐻(𝑡)
8𝜋𝐺

(2.9)

𝜌(𝑡) ≡ ∑
𝑖

𝜌𝑖(𝑡) (2.10)

𝛺𝑖(𝑡) ≡ 𝜌𝑖(𝑡)
𝜌crit(𝑡)

(2.11)

𝛺(𝑡) ≡ ∑
𝑖

𝛺𝑖(𝑡). (2.12)

The cosmological parameters used in this thesis are the current dark matter density
𝛺DM, the dimensionless Hubble constant ℎ and the mean temperature 𝑇0 of the
CMB.

2.2 Thermodynamics of the Early Universe

In general, the number density for a certain particle species 𝑖 with the degeneracy
𝑔𝑖 in thermal equilibrium can be calculated by solving the following integral:

𝑛eq
𝑖 = 𝑔𝑖

(2𝜋)3 ∫ d3𝑝 𝑓𝑖( ⃗𝑝), (2.13)

where 𝑓𝑖( ⃗𝑝) is either the Fermi-Dirac or the Bose-Einstein distribution, depending
on the spin of the particle species studied. The corresponding energy density can
be calculated likewise:

𝜌eq
𝑖 = 𝑔𝑖

(2𝜋)3 ∫ d3𝑝 𝐸𝑖( ⃗𝑝)𝑓𝑖( ⃗𝑝). (2.14)

When dealing with thermodynamics in the radiation-dominated era, all particle
species are assumed to be relativistic, i.e. 𝑇 ≫ 𝑚, and to have vanishing chemical
potentials. Solving the integral in equation (2.14) under these conditions yields

5



2 Theoretical Background

𝜌R, eq
𝑖 = 𝜋2

30
𝑔𝑖𝑇 4 × {

1 boson
7
8 fermion.

(2.15)

It results that the total energy density of relativistic particles in the early Universe
can be calculated by

𝜌R, eq
tot = 𝜋2

30
𝑔eff(𝑇 ) 𝑇 4, (2.16)

where the effective degeneracy is given by

𝑔eff(𝑇 ) = ∑
𝑖 = bosons

𝑔𝑖 (𝑇𝑖
𝑇

)
4

+ 7
8

∑
𝑖 = fermions

𝑔𝑖 (𝑇𝑖
𝑇

)
4

. (2.17)

In the time period investigated in this thesis, all particle species of the SM are still
in thermal equilibrium and therefore have the same temperature 𝑇𝑖. Counting all of
their degrees of freedom leads to 𝑔eff(𝑇 ≳ 𝑚𝑡) = 106.25, where 𝑚𝑡 denotes the mass
of the top quark, which is the first species to fall out of the thermal equilibrium at
𝑇 ≃ 𝑚𝑡.

The entropy of a single particle species can be shown to be conserved and its entropy
density is given by

𝑠𝑖 = 𝜌𝑖 + 𝑝𝑖
𝑇𝑖

. (2.18)

This yields the following total entropy density

𝑠 = 2𝜋2

45
𝑔eff, s(𝑇 ) 𝑇 3, (2.19)

when summed over all particle species of the SM in a very good approximation until
today, since the entropy is dominated by relativistic particles. The newly introduced
quantity 𝑔eff, s(𝑇 ) is defined analogously to (2.17) as

𝑔eff, s(𝑇 ) = ∑
𝑖 = bosons

𝑔𝑖 (𝑇𝑖
𝑇

)
3

+ 7
8

∑
𝑖 = fermions

𝑔𝑖 (𝑇𝑖
𝑇

)
3

, (2.20)

which also takes a value of 𝑔eff, s(𝑇 ≳ 𝑚𝑡) = 106.25 in the investigated time period.
Its present-day value can be approximated as 𝑔0

eff, s = 3.91.
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2.3 Generating Neutrino Masses with the Type I Seesaw Mechanism

2.3 Generating Neutrino Masses with the Type I Seesaw
Mechanism

As mentioned in the first chapter, evidence shows neutrinos must have mass, which
is not included in the SM. Therefore, new mass terms have to be included into the
Lagrangian density of the SM. The mass term generated by the Dirac Lagrangian
(for any fermion field 𝛹) is

ℒDirac
mass = −𝛹𝑚𝛹 = −𝛹L𝑚𝛹R − 𝛹R𝑚𝛹L, (2.21)

which is not gauge invariant under the electroweak symmetry group, since 𝛹L and 𝛹R
behave differently under SU(2)𝐿 and U(1)𝑌. This would directly lead to vanishing
lepton masses as it is required that gauge freedom exists. However, this problem
was solved by the Higgs mechanism. By introducing Yukawa couplings 𝑦𝛹 in a
Lagrangian of the form

ℒYukawa = −𝑦𝛹𝛹Lℎ𝛹R − 𝑦𝛹𝛹Rℎ𝛹L, (2.22)

which is gauge invariant, one is able to generate Dirac masses which do not violate
the gauge freedom. When the Higgs field ℎ receives a vacuum expectation value
(VEV) 𝑣 by spontaneous symmetry breaking, the Dirac mass of the fermion field 𝛹
amounts to 𝑚𝛹 = 𝑦𝛹𝑣:

ℒYukawa = −𝛹L 𝑦𝛹𝑣⏟
= 𝑚𝛹

𝛹R − 𝛹R 𝑦𝛹𝑣⏟
= 𝑚𝛹

𝛹L. (2.23)

The Higgs mechanism turned out to be convincing for most of the lepton masses.
Neutrino masses, however, are still fraught with problems in the SM, since a Dirac
mass term would require right-handed neutrinos, which have not been observed yet.
Another option would be a Majorana mass term

ℒMajorana
mass = −1

2
𝜈L𝑚LL𝜈 𝑐

L − 1
2

𝜈 𝑐
L 𝑚LL𝜈L, (2.24)

where the exponent 𝑐 denotes the CP conjugation of the respective field. Nevertheless,
this mass term would violate both lepton number and gauge invariance and thus is
forbidden.

A convenient solution to this problem is the type I seesaw mechanism. Its idea is
to assume that the Majorana mass terms are generated effectively by introducing
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2 Theoretical Background

right handed neutrino fields 𝜈R. These fields are singlets under the SM gauge group,
and couple with the active neutrinos. Hence, we are left with two possible terms,
namely the Dirac mass term

− 𝜈L𝑚LR𝜈R − 𝜈R𝑚LR𝜈L, (2.25)

and another Majorana mass term

− 1
2

𝜈R𝑀RR𝜈 𝑐
R − 1

2
𝜈 𝑐

R𝑀RR𝜈R. (2.26)

This set of mass terms can be summarized in form of a mass matrix:

− 1
2

(𝜈L 𝜈 𝑐
R) ( 0 𝑚LR

𝑚T
LR 𝑀RR

) (𝜈 𝑐
L

𝜈R
) + ℎ.𝑐. (2.27)

Diagonalizing this matrix and adopting the approximation that 𝑀RR ≫ 𝑚LR yields
effective Majorana masses as defined in (2.24), which are naturally suppressed by
the size of 𝑀RR

𝑚LL = −𝑚LR𝑀−1
RR𝑚T

LR. (2.28)

The applied approximation is justified, since the mass scale of 𝑚LR is thought to be
the electroweak scale, while the newly introduced neutrinos are electroweak singlets
and therefore not bound to this scale. In the case of only one active neutrino 𝜈
and one sterile neutrino 𝑁, equation (2.28) can be written in terms of one Yukawa
coupling 𝑦, the Higgs VEV 𝑣 and the right handed neutrino mass 𝑚𝑁

𝑚𝜈 = 𝑦2𝑣2

𝑚𝑁
. (2.29)

In the last step, the sign of 𝑚𝜈 was dropped, owing to its absorption into the complex
phase of the SM neutrino field.
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2.4 Derivation of the Boltzmann Equation

2.4 Derivation of the Boltzmann Equation

Assuming there were no particle interactions, the total number of particles of a
given species would be constant, which would result in the following relation for
their number density 𝑛:

d
d𝑡

(𝑛𝑎(𝑡)3) = 0 ⟹ 𝑛̇ + 3𝑛𝐻 = 0. (2.30)

Now considering that there actually are interactions 𝑖1 + ... + 𝑖𝑎 ↔ 𝑖𝑎+1 + ... + 𝑖𝑛
that are able to change the species of the particles investigated, one has to include
the following term

𝑛̇ + 3𝐻𝑛 = − ∫ d𝒫𝑛 (2𝜋)4𝛿(4) (
𝑎

∑
𝑖=1

𝑝𝑖 −
𝑛

∑
𝑖=𝑎+1

𝑝𝑖)

× (|ℳ→|2
𝑎

∏
𝑖=1

𝑓𝑖 − |ℳ←|2
𝑛

∏
𝑖=𝑎+1

𝑓𝑖) , (2.31)

where

d𝒫𝑛 =
𝑛

∏
𝑖=1

𝑔𝑖
(2𝜋)3

d3𝑝𝑖
2𝐸𝑖

(2.32)

is the Lorentz-invariant phase space, the 𝛿(4) term enforces the conservation of
energy and momentum and the latter bracket represents the rate at which the
process transforms the particles 1 to 𝑎 into 𝑎 + 1 to 𝑛. This can be simplified
by assuming that CP-symmetry is conserved, which is equivalent to saying that
the forward and backward processes have the same squared transition amplitudes
|ℳ|2 ≡ |ℳ←|2 = |ℳ→|2. A further simplification can be adopted by approximating
the distribution functions 𝑓𝑖 by multiples 𝛼𝑖 of the Boltzmann distribution 𝑓eq

𝑖 :

𝑓𝑖 ≡ 𝛼𝑖𝑓
eq
𝑖 = 𝛼𝑖e−𝐸𝑖/𝑇 , where ∂𝑝𝑖

𝛼𝑖 = 0. (2.33)

Using energy conservation and equation (2.13) leads to

𝑛̇ + 3𝐻𝑛 = −𝛾eq (
𝑎

∏
𝑖=1

𝑛𝑖
𝑛eq

𝑖
−

𝑛
∏

𝑖=𝑎+1

𝑛𝑖
𝑛eq

𝑖
) , (2.34)
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2 Theoretical Background

where

𝛾eq ≡ ∫ d𝒫𝑛 (2𝜋)4𝛿(4) (
𝑎

∑
𝑖=1

𝑝𝑖 −
𝑛

∑
𝑖=𝑎+1

𝑝𝑖) |ℳ|2
𝑎

∏
𝑖=1

𝑓𝑖. (2.35)

It is useful to exclude the effect of the expansion of the Universe so one can consider
solely the evolution of the particle number density in a comoving volume. This
can be done by defining the quantity 𝑌 ≡ 𝑛/𝑠 and surmising that the number of
effective degrees of freedom 𝑔eff is approximately constant in the investigated time
period, which yields

𝑠 ̇𝑌 = −𝛾eq (
𝑎

∏
𝑖=1

𝑌𝑖
𝑌 eq

𝑖
−

𝑛
∏

𝑖=𝑎+1

𝑌𝑖
𝑌 eq

𝑖
) . (2.36)

Finally, since it is common to express the quantities used rather as functions of
temperature than as functions of time, one should introduce the dimensionless
time parameter 𝑧 = 𝑚/𝑇, which fulfills the condition ̇𝑧 = 𝑧𝐻(𝑧). The Boltzmann
equation thus can be rewritten as

𝑠𝑧𝐻(𝑧)𝑌 ′ = −𝛾eq (
𝑎

∏
𝑖=1

𝑌𝑖
𝑌 eq

𝑖
−

𝑛
∏

𝑖=𝑎+1

𝑌𝑖
𝑌 eq

𝑖
) , (2.37)

where 𝑌 ′ denotes the derivative of 𝑌 with respect to 𝑧.

2.5 Freeze-In and Freeze-Out Processes

As mentioned in section 2.2, massive particles did not remain in thermal equilibrium
until today. If they did, the Universe would consist mostly of photons, since any
massive particle density would be exponentially suppressed. To understand “the
origin of species”, as [2] puts it, it is crucial to investigate the deviations from
equilibrium, that led to today’s relic densities of massive particles. In general, there
are two different kinds of basic processes that can lead out of the equilibrium: freeze-
in and freeze-out processes. The following is intended to contrast both mechanisms
in the case of DM relic densities.
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2.5 Freeze-In and Freeze-Out Processes

Freeze-out mechanism: The DM is initially in thermal equilibrium and decouples
from the heat bath, when the DM interaction rate drops below the Hubble parameter
𝐻 < 𝛤. Or in other words: The thermal equilibrium cannot be sustained any
longer, when the Universe expands so fast that the interactions which maintain
the equilibrium are no longer efficient due to causality (typically at 𝑧 ∼ 20). The
generated yield is characteristically proportional to the inverse square of the coupling
strength 𝜆: 𝑌FO ∝ 1/𝜆2 (see figure 2.1).

Freeze-in mechanism: The DM has a negligible initial abundance, because of its
feeble interaction with the thermal bath. As the Universe evolves, more of the
so called FIMPs (Feebly Interacting Massive Particles) are produced by decaying
particles from the bath, however still suppressed by the small coupling. When the
temperature reaches the decaying particle’s mass (𝑧 ∼ 1), the process gets dominant
and a yield that is proportional to the square of the coupling strength is produced:
𝑌FI ∝ 𝜆2 (see figure 2.1).

log 𝑧

lo
g𝑌

𝜆

log 𝑧

lo
g𝑌

𝜆

Figure 2.1: Two schematic log-log plots for the basic mechanisms of DM genesis:
the conventional freeze-out (left) and the freeze-in (right) processes as a function
of the dimensionless time parameter 𝑧 for three different values of the coupling
strength between the visible sector and DM particles. The dashed gray lines
represent the equilibrium density of DM particles and the arrows indicate the effect
of an increased coupling on the yield in each case.
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3 Solutions of the Boltzmann Equation

3.1 The Boltzmann Equation for ℎ → ̄𝜈𝑁

To apply the Boltzmann equation in its general form (2.37) to the decay of the
Higgs boson ℎ → ̄𝜈𝑁, one has to calculate the space-time density of the decay in
thermal equilibrium 𝛾eq. By assuming that |ℳ|2 does not depend on the relative
motion of particles with respect to the plasma, the calculation yields

𝛾eq = 𝑛eq
ℎ 𝛤ℎ

K1(𝑧ℎ)
K2(𝑧ℎ)

, (3.1)

where K𝑖 are the modified Bessel functions of the second kind, 𝛤ℎ is the decay width
of the Higgs boson in its rest frame [5] and 𝑧ℎ = 𝑚ℎ/𝑇. Therefore the Boltzmann
equation for this decay takes the following form

𝑌 ′
ℎ = − 𝛤ℎ

𝑧ℎ𝐻
K1(𝑧ℎ)
K2(𝑧ℎ)

𝑌 eq
ℎ [ 𝑌ℎ

𝑌 eq
ℎ

− 𝑌𝑁
𝑌 eq

𝑁

𝑌𝜈
𝑌 eq

𝜈
] . (3.2)

Given that both the Higgs boson and the active neutrino interact with the other SM
particles in the thermal bath, one can assume that they stay in thermal equilibrium
for the time period investigated. Hence, one can write 𝑌ℎ = 𝑌 eq

ℎ and 𝑌𝜈 = 𝑌 eq
𝜈 to

get

𝑌 ′
ℎ = − 𝛤ℎ

𝑧ℎ𝐻
K1(𝑧ℎ)
K2(𝑧ℎ)

𝑌 eq
ℎ [1 − 𝑌𝑁

𝑌 eq
𝑁

] . (3.3)

To get a differential equation for the sterile neutrino density 𝑌𝑁, a relation between
𝑌 ′

ℎ and 𝑌 ′
𝑁 has to be found. Since it is expected that the creation of a sterile neutrino

is directly linked to the annihilation of a Higgs boson and vice versa (at least in the
early Universe), 𝑌 ′

ℎ = −𝑌 ′
𝑁 seems to be a reasonable guess. We are left with

𝑌 ′
𝑁 = 𝛤ℎ

𝑧ℎ𝐻
K1(𝑧ℎ)
K2(𝑧ℎ)

𝑌 eq
ℎ [1 − 𝑌𝑁

𝑌 eq
𝑁

] . (3.4)
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3.1 The Boltzmann Equation for ℎ → ̄𝜈𝑁

Now, the equations (2.3) and (2.16) can be used to find the 𝑧ℎ dependence of the
Hubble parameter

𝐻(𝑧ℎ) = √8𝜋3

90
𝑔eff

𝑚2
ℎ

𝑚pl

1
𝑧2

ℎ
, (3.5)

where 𝑚pl ≡ √ℏ𝑐
𝐺 is the Planck mass. To obtain the corresponding 𝑧ℎ dependence

of 𝑌 eq
ℎ ≡ 𝑛eq

ℎ /𝑠, the integral in equation (2.13) is solved at high energies for a boson
with negligible chemical potential and mass 𝑚ℎ:

𝑛eq
ℎ = 𝑔ℎ

2𝜋2
𝑚3

ℎ
𝑧ℎ

K2(𝑧ℎ). (3.6)

Using equation (2.19) yields

𝑌 eq
ℎ (𝑧ℎ) = 45

4𝜋4
𝑔ℎ

𝑔eff, s
𝑧2

ℎ K2(𝑧ℎ). (3.7)

A calculation analogous to that in (3.6) for 𝑌 eq
ℎ leads to the similar expression

𝑌 eq
𝑁 = 45

4𝜋4
𝑔𝑁

𝑔eff, s
(𝑚𝑁

𝑚ℎ
)

2
𝑧2

ℎ K2 (𝑚𝑁
𝑚ℎ

𝑧ℎ) . (3.8)

The last unknown quantity in equation (3.4) is the decay width 𝛤ℎ of the process
ℎ → ̄𝜈𝑁. It can be calculated by solving the following integral [6]:

𝛤ℎ = 1
2𝑚ℎ

∫ 1
2𝐸𝜈

d3𝑝𝜈
(2𝜋)3

1
2𝐸𝑁

d3𝑝𝑁
(2𝜋)3 (2𝜋)4𝛿(4)(𝑝ℎ − 𝑝𝜈 − 𝑝𝑁) |ℳ|2 , (3.9)

which can be done by several substitutions leading to

𝛤ℎ = {
0 𝑚ℎ ≤ 𝑚𝜈 + 𝑚𝑁

|𝑝⃗𝑁|
8𝜋𝑚2

ℎ
|ℳ (| ⃗𝑝𝑁|)|2 𝑚ℎ > 𝑚𝜈 + 𝑚𝑁

(3.10)

where

13



3 Solutions of the Boltzmann Equation

| ⃗𝑝𝑁| = 1
2𝑚ℎ

√𝑚4
ℎ + 𝑚4

𝜈 + 𝑚4
𝑁 − 2𝑚2

ℎ𝑚2
𝜈 − 2𝑚2

ℎ𝑚2
𝑁 − 2𝑚2

𝜈𝑚2
𝑁. (3.11)

The squared transition amplitudes with summation over initial and final spins |ℳ|2

can be calculated by consulting the Feynman rules and Casimir’s Trick for the
occurring products of spinors. This leads to the following trace in Feynman slash
notation, which can be transformed using the trace theorems for 𝛾 matrices:

|ℳ (| ⃗𝑝𝑁|)|2 = 𝑦2Tr [( ̸𝑝𝑁 + 𝑚𝑁)( ̸𝑝𝜈 − 𝑚𝜈)] (3.12)
= 4𝑦2(𝑝𝑁 ⋅ 𝑝𝜈 − 𝑚𝑁𝑚𝜈). (3.13)

Plugging in equation (3.11) and approximating 𝑚𝜈 ≪ 𝑚𝑁 yields

𝛤ℎ = 𝑦2𝑚ℎ
8𝜋

(1 − 𝑚2
𝑁

𝑚2
ℎ

)
2

. (3.14)

Finally, inserting equations (3.5), (3.7), (3.8) and (3.14) into (3.4) leads to the
following result:

𝑌 ′
𝑁 = √ 90

8𝜋3
45

32𝜋5
𝑔ℎ

𝑔eff, s
√𝑔eff

𝑦2𝑚pl

𝑚ℎ
(1 − 𝑚2

𝑁
𝑚2

ℎ
)

2

𝑧3
ℎ K1(𝑧ℎ) [1 − 𝑌𝑁

𝑌 eq
𝑁

] (3.15)

= √ 90
8𝜋3

45
32𝜋5

𝑔ℎ
𝑔eff, s

√𝑔eff

𝑦2𝑚pl

𝑚ℎ
(1 − 𝑚2

𝑁
𝑚2

ℎ
)

2

𝑧3
ℎ K1(𝑧ℎ)

× ⎡⎢
⎣

1 − ( 45
4𝜋4

𝑔𝑁
𝑔eff, s

(𝑚𝑁
𝑚ℎ

)
2

𝑧2
ℎ K2 (𝑚𝑁

𝑚ℎ
𝑧ℎ))

−1

𝑌𝑁
⎤⎥
⎦

. (3.16)

3.2 Analytical Solutions of the Boltzmann Equation

The differential equation (3.16) has the following mathematical form

d𝑌𝑁(𝑧ℎ)
d𝑧ℎ

= 𝛼𝑧3
ℎ K1(𝑧ℎ) [1 − 𝑌𝑁(𝑧ℎ)

𝛽𝑧2
ℎ K2(𝛾𝑧ℎ)

] 𝛼, 𝛽, 𝛾 ∈ ℝ, (3.17)
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3.2 Analytical Solutions of the Boltzmann Equation

which is expected to not have any nontrivial analytical solutions. However, by
assuming that 𝑌𝑁 ≪ 𝑌 eq

𝑁 , equation (3.17) can be simplified to

d𝑌𝑁(𝑧ℎ)
d𝑧ℎ

= 𝛼𝑧3
ℎ K1(𝑧ℎ), (3.18)

which can be integrated to give a closed form solution for 𝑌𝑁(𝑧ℎ). Further assuming
that 𝑌𝑁(0) vanishes (see section 2.5) yields

𝑌𝑁(𝑧ℎ) = 𝛼 ∫
𝑧ℎ

0
d𝑥 𝑥3 K1(𝑥), (3.19)

so that the present sterile neutrino abundance can be approximated as

𝑌 0
𝑁 ≡ 𝑌𝑁(𝑧ℎ → ∞) = 𝛼 ∫

∞

0
d𝑥 𝑥3 K1(𝑥) = 3𝜋

2
𝛼. (3.20)

This directly leads to an analytic expression for the density parameter 𝛺𝑁 defined
in equation (2.12) for the introduced sterile neutrino species in dependence of its
mass 𝑚𝑁 and its Yukawa coupling 𝑦. Combining (2.9), (2.11) and (3.20), and
supposing that (2.19) still holds today at 𝑇 = 𝑇0 and that the sterile neutrinos are
non-relativistic in the present so that 𝜌0

𝑁 = 𝑚𝑁𝑛0
𝑁, gives

𝛺𝑁 ≡ 𝜌0
𝑁

𝜌0
crit

= 1
4𝜋

√ 90
8𝜋3

𝑔0
eff, s

𝑔eff, s

𝑔ℎ√𝑔eff

𝑦2𝑚𝑁
𝑚ℎ𝑚pl

(1 − 𝑚2
𝑁

𝑚2
ℎ

)
2 𝑇 3

0
𝐻2

0
. (3.21)

Equating this with the observed quantity 𝛺DM and solving for positive 𝑦 yields the
required Yukawa coupling 𝑦ana for producing the DM density 𝛺DM according to the
analytical solution (3.20) of the Boltzmann equation:

𝑦ana = 2√2
3

4√𝜋5

5 √
𝑔eff, s

𝑔0
eff, s

4
√𝑔eff√𝑔ℎ

√𝑚pl𝑚5
ℎ

𝑚𝑁

√𝛺DM
𝑚2

ℎ − 𝑚2
𝑁

𝐻0

√𝑇 3
0

. (3.22)

Figure 3.1 includes a plot of this relation and the condition (2.29) for generating the
neutrino mass 𝑚𝜈 in the seesaw mechanism, where the physical constants listed in
table 3.1 have been used. The intersections of the depicted graphs can be interpreted
as those combinations of the Yukawa coupling 𝑦 and the sterile neutrino mass 𝑚𝑁
that lead to the observed DM yield and the expected active neutrino mass 𝑚𝜈. The
determined parameters can be found in table 3.2.
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3 Solutions of the Boltzmann Equation

Parameter Value

𝑔ℎ 4
𝑔eff 106.75

𝑔eff, s 106.75
𝑔0

eff, s 3.91
𝛺DM 0.258

ℎ 0.678
𝑇0 2.7255 K
𝑣 246 GeV

𝑚𝜈 0.1 eV
𝑚ℎ 125.2 GeV
𝑚pl 1.221 × 1019 GeV

Table 3.1: List of the physical constants that were used to produce figure 3.1 [7].

𝑦 𝑚𝑁

6.3 × 10−10 239.3 keV
4.5 × 10−7 125.199 88 GeV

Table 3.2: Possible Yukawa couplings 𝑦 and sterile neutrino masses 𝑚𝑁 for
generating the observed DM abundance 𝛺DM and the expected active neutrino
mass 𝑚𝜈 ∼ 𝒪(0.1 eV).
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3.2 Analytical Solutions of the Boltzmann Equation

0 20 40 60 80 100 120
𝑚𝑁 / GeV

−12

−11

−10

−9

−8

−7

−6
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𝑦 Freeze-in
Seesaw I

0.0002 0.0004
−9.4

−9.3

−9.2

−9.1

−9.0

Figure 3.1: Plot of the relations (2.29) and (3.22) for generating the observed DM
abundance 𝛺DM = 0.258 and the expected active neutrino mass 𝑚𝜈 ∼ 𝒪(0.1 eV).
The intersections can be interpreted as the two possible combinations of 𝑦 and
𝑚𝑁 with which the active neutrino mass 𝑚𝜈 and the DM abundance 𝛺DM can be
realized in the model considered here. The parameters for these intersections are
listed in table 3.2.
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3 Solutions of the Boltzmann Equation

3.3 Numerical Solutions of the Boltzmann Equation

As previously stated, equation (3.16) is expected to not have any analytical solutions
without the assumption 𝑌𝑁 ≪ 𝑌 eq

𝑁 . Hence, a numerical solution of this differential
equation is necessary to find exact predictions for 𝑦 and 𝑚𝑁. The numerical sta-
bility can be improved by using the logarithmic representation of 𝑌𝑁 and 𝑧ℎ when
calculating the derivative

𝑌𝑁
𝑧ℎ

d log 𝑌𝑁
d log 𝑧ℎ

= √ 90
8𝜋3

45
32𝜋5

𝑔ℎ
𝑔eff, s

√𝑔eff

𝑦2𝑚pl

𝑚ℎ
(1 − 𝑚2

𝑁
𝑚2

ℎ
)

2

𝑧3
ℎ K1(𝑧ℎ)

× ⎡⎢
⎣

1 − ( 45
4𝜋4

𝑔𝑁
𝑔eff, s

(𝑚𝑁
𝑚ℎ

)
2

𝑧2
ℎ K2 (𝑚𝑁

𝑚ℎ
𝑧ℎ))

−1

𝑌𝑁
⎤⎥
⎦

. (3.23)

To find the necessary Yukawa coupling 𝑦num(𝑚𝑁) to produce the observed DM
density, an algorithm is used which minimizes the difference between 𝛺DM and the
quantity

𝛺num
𝑁 (𝑦, 𝑚𝑁) ≡

𝜌0, num
𝑁
𝜌0

crit
= 16𝜋3

135
𝑔0

eff, s
𝑚𝑁
𝑚2

pl

𝑇 3
0

𝐻2
0

𝑌 0
𝑁(𝑦, 𝑚𝑁) (3.24)

at a given 𝑚𝑁, where 𝑌 0
𝑁(𝑦, 𝑚𝑁) is the numerical solution of (3.23) at 𝑧ℎ ≫ 1.

The analytical expression (3.22) for 𝑦ana(𝑚𝑁) is used as an initial guess in each
evaluation. Using the automated numerical solver for ordinary differential equations
implemented in the software Mathematica [8] yields an output almost identical to
that one represented in figure 3.1. The same physical parameters as in the analytical
calculation (see table 3.1) and the initial and final values listed in table 3.3 are used
for this cause.

Parameter Value

log10 𝑧ℎ, init −20
log10 𝑧ℎ, fin 10
log10 𝑌 init

𝑁 −30

Table 3.3: List of the computational parameters that were used for the numerical
solution of the Boltzmann equation (3.23).
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3.3 Numerical Solutions of the Boltzmann Equation

To evaluate the deviation from the analytical results, the ratio (𝑦num − 𝑦ana)/𝑦ana is
calculated and plotted in dependence of 𝑚𝑁 (see figure 3.2). It turns out that this
ratio diverges at 𝑚𝑁 = 0 and 𝑚𝑁 = 𝑚ℎ, which is due to errors when calculating the
numerical solution of the differential equation (3.23). However, the relative deviations
in the regions around the two possible options of 𝑚𝑁 that were obtained with the
analytical approach are still remarkably small. For example, at 𝑚𝑁 = 239.3 keV
(see table 3.2), the analytical calculations yield 𝑦ana = 6.2884 × 10−10 while the
numerical result is 𝑦num = 6.2890 × 10−10. This corresponds to a relative deviation
of about 0.01%. Both calculations lead to the same result within the scope of an
accuracy of at least 10 decimal places at 600 MeV ≲ 𝑚𝑁 ≲ 118 GeV.

0 20 40 60 80 100 120
𝑚ℎ / GeV

0

1

2

3

4

5

6

×10−10

𝑦num − 𝑦ana
𝑦ana

0.0002 0.0004

0.00005

0.00010

0.00015

0.00020

0.00025

Figure 3.2: Plot of the relative deviation from the analytical calculations (3.22).
Around 𝑚𝑁 = 239.3 keV the deviation is only about 0.01% although the ratio
plotted diverges at 𝑚𝑁 = 0 and 𝑚𝑁 = 𝑚ℎ.

To find the combinations of 𝑦num and 𝑚𝑁 with which the seesaw mechanism (2.29)
additionally yields the active neutrino mass 𝑚𝜈 ∼ 𝒪(0.1 eV), another algorithm is
implemented to find a local minimum of |𝑦num(𝑚𝑁) − 𝑦seesaw(𝑚𝑁)| close to a given
𝑚𝑁. Using the analytical findings for 𝑚𝑁 as initial values confirms the parameters
listed in table 3.2.
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4 Discussion of the Results

4.1 Justification of the Assumptions

4.1.1 Derivation of the Boltzmann equation

For the derivation of (2.37), it was required that the effective number of degrees
of freedom is constant for the time period investigated. This can be quantified
by stating that the freeze-in of DM terminates at 𝑧ℎ ∼ 1 (see next paragraph),
which refers to a temperature of 𝑇FI ∼ 𝑚ℎ = 125.2 GeV, corresponding to the
elektroweak epoch, when 𝑔eff(𝑇 ∼ 𝑚ℎ) ≈ 95.25. Hence, the error made due to a
changing effective number of degrees of freedom is of order 𝒪(10%). However, since
𝑔eff only occurs with exponents −1

2 and 1
4 in (3.21) and (3.22), the error gets less

significant.

4.1.2 Solution of the Boltzmann equation

The central assumption in the analytic solution in chapter 3.2 was that 𝑌𝑁(𝑧ℎ) ≪
𝑌 eq

𝑁 (𝑧ℎ). To demonstrate the accuracy of this claim, it is valuable to take a look at
the occurring orders of magnitude of 𝑌𝑁(𝑧ℎ) and 𝑌 eq

𝑁 . Figure 4.1 depicts a plot of the
analytical solution for the first combination of 𝑦 and 𝑚𝑁 in table 3.2. It can be seen
that the equilibrium density 𝑌 eq

𝑁 is more than three orders of magnitude higher than
𝑌𝑁 for the relevant period of time, in which the actual freeze-in happens (𝑧ℎ ∼ 1).
As late as 𝑧ℎ ∼ 6 the equilibrium density drops below the constant yield 𝑌 0

𝑁 and the
assumption is not longer suitable. Nonetheless, at this time the freeze-in has already
happened and a simplification of the differential equation is not necessary any more
since its solution gets trivial. One can conclude that the analytical solution of the
Boltzmann equation is therefore sufficiently exact and that the deviations depicted
in figure 3.2 are dominantly due to numerical inaccuracies.
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4.1 Justification of the Assumptions
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𝑁

Figure 4.1: Exemplary plot to demonstrate the validity of 𝑌𝑁(𝑧ℎ) ≪ 𝑌 eq
𝑁 (𝑧ℎ).

The parameters of the first intersection in figure 3.1 were used to produce both
graphs.
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4 Discussion of the Results

4.2 Physical Relevance of the Outcome

Both of the possible Yukawa couplings 𝑦 (see table 3.2) are much smaller than unity,
which in hindsight justifies the freeze-in approach to solve the Boltzmann equation.
However, the problem of being unable to account for small active neutrino masses
in the SM is postponed to the new issue of a lack of explanation for 𝑦 ≪ 1. This
dilemma could be possibly solved in a more fundamental theory, though.

The Tremaine-Gunn bound is a fundamental criterion for fermionic DM candidates
since it is simply a reformulation of the Pauli exclusion principle when applied to
DM dominated galaxies. Experiments require a lower bound on sterile neutrino
masses of 0.4 keV. Both of the possible masses 𝑚𝑁 adhere to this condition. [9]

To count as a valid DM candidate, a particle species has to meet certain requirements.
One of these criteria is the particle’s stability on cosmological timescales which
implies that its mean lifetime should exceed the age of the Universe. The strongest
constraint on sterile neutrino DM is its radiative decay 𝑁 → 𝛾𝜈 into a photon and
an active neutrino, for which the decay width can be approximated on one-loop
level of the perturbation theory [10] to be

𝛤𝑁→𝛾𝜈 = 9𝛼𝐺2
F

1024𝜋4 sin2 (2𝜃) 𝑚5
𝑁 ≃ 5.5 ⋅ 10−22 𝜃2 ( 𝑚𝑁

keV
)

5
s−1, (4.1)

where 𝛼 ≃ 1/137, 𝐺F ≃ 1.166 × 10−5 GeV−2, and the mixing angle is defined as

𝜃 ≡ 𝑚𝜈
𝑚𝑁

. (4.2)

Putting in the obtained values for 𝑚𝑁 yields the decay widths

𝛤𝑁→𝛾𝜈(𝑚𝑁 = 239.3 keV) = 1.8 × 10−16 s−1 (4.3)
𝛤𝑁→𝛾𝜈(𝑚𝑁 = 121.199 88 GeV) = 1.4 × 107 s−1, (4.4)

which correspond to the following lifetimes

𝜏𝑁(𝑚𝑁 = 239.3 keV) = 5.5 × 1015 s (4.5)
𝜏𝑁(𝑚𝑁 = 121.199 88 GeV) = 7.4 × 10−8 s. (4.6)
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4.2 Physical Relevance of the Outcome

Since the age of the Universe is approximately 𝑡0 ≈ 4 × 1017 s, the sterile neutrino
with a mass 𝑚𝑁 slightly below the Higgs mass 𝑚ℎ = 125.2 GeV is definitely ruled
out due to its instability, while the lifetime of the first sterile neutrino is only
about 78 times too low to be called stable. Thus, a model with one active and one
cosmologically stable sterile neutrino which accounts for the active neutrino’s mass
𝑚𝜈 ∼ 𝒪(0.1 eV) by using the type I seesaw mechanism is not possible.

Nonetheless, the model can be adapted to comply with this constraint (next to others)
when withdrawing the condition that only one DM particle species accounts for all
of the observed DM abundance, and that there exists not only one active neutrino
species, but three as in the SM. By introducing two other sterile neutrino species
with individual Yukawa couplings and non-degenerate masses it could possible to
explain all of the mass differences of the SM neutrinos and therefore the observed
neutrino oscillations in addition to the current DM density. Additionally, if the
lightest of the sterile neutrinos had a keV mass and the two heavy sterile neutrinos
had masses in the range 150 MeV ≲ 𝑚2,3

𝑁 ≲ 100 GeV, a significant lepton asymmetry
in the early Universe could have been generated. This could have resulted in today’s
baryon asymmetry. [9]

When trying to test the theory of these feebly interacting particle species, an
enormous effort has to be put into the experimental tests since their direct detection
seems to be hopeless. But there are still some possibilities to draw conclusions
on the existence of sterile neutrino DM on an observational basis: The emitted
photons of their radiative decay are often heralded as the “smoking gun” signal
of sterile neutrino DM. The energy of these photons can be calculated using the
aforementioned perturbation theory on one-loop level [9]:

𝐸𝛾 = 𝑚𝑁
2

(1 − 𝑚2
𝜈

𝑚2
𝑁

) ≈ 𝑚𝑁
2

. (4.7)

Since the lightest sterile neutrino is expected to have a mass of several keV, the
emitted photons would be observable in X-ray telescopes as a peak in the intensity
at a given photon energy 𝐸𝛾 when observing structures in the Universe, where DM is
believed to accumulate. Other observational evidence for sterile neutrino DM could
be found in astrophysics, e.g. in the form of an explanation for several phenomena
concerning supernovae. [10]
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5 Summary and Perspective

The objective of this thesis was to investigate whether both the neutrino masses and
the observed DM abundance could be explained with the freeze-in mechanism on the
basis of a theory with only one active and one sterile neutrino. The arising Boltzmann
equation could be solved analytically by assuming that the sterile neutrino number
density in a comoving volume 𝑌𝑁 is much smaller than its equilibrium density 𝑌 eq

𝑁
for a sufficiently large time period. This claim proved to be justified by solving the
occurring differential equations without this assumption numerically, yielding the
same results. Two possible combinations of the active neutrino’s Yukawa coupling
𝑦 and the sterile neutrino’s mass 𝑚𝑁 turned out to solve this problem. The first
one corresponds to a right handed neutrino with a mass of 𝑚𝑁 = 239.3 keV and
a Yukawa coupling 𝑦 = 6.3 × 10−10 whose generated DM density can therefore be
written by

𝛺DMℎ2 ∼ 0.12 ( 𝑦
6.3 ⋅ 10−10 )

2
( 𝑚𝑁

239 keV
) , (5.1)

while the other one has a fine-tuned mass about 120 keV below the Higgs mass and
a corresponding Yukawa coupling of 𝑦 = 4.5 × 10−7. The latter case is definitely
ruled out due to the decay 𝑁 → 𝛾𝜈, which yields an associated decay width of
about 1.4 × 107 s−1, whereas the first combination of values is more favorable for
the condition of a particle species which is stable on cosmological timescales: This
decay has a lifetime about 78 times smaller than the age of the Universe, which
on the one hand is huge, but on the other hand not big enough to let the sterile
neutrino be called “stable” in this context. Hence, the studied model with only one
active and one sterile neutrino is not tenable.

However, if one drops the assumption of a simplified model with one SM and one right-
handed neutrino, the radiative decay of the lightest sterile neutrino should become
negligible on cosmological timescales due to a smaller required mass. Beyond that,
the two additional sterile neutrinos could serve as an explanation for the observed
neutrino oscillations by generating the mass differences between the active neutrino
species. According to [9], a significant lepton number violation that could lead
to the present baryon asymmetry can also be achieved under certain conditions.
However, this would require a much more sophisticated theory that should also
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include oscillations of the active neutrinos into the sterile sector, which have been
left out completely in this thesis along with an explanation for the smallness of the
occurring Yukawa couplings. These open questions leave a vast space for further
theoretical and experimental investigations which have yet to be carried out.
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