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Introduction: Fine tuning, hierarchy and naturalness

Figure 1: Fine tuning in a nutshell. 2



Introduction: Fine tuning, hierarchy and naturalness

Fine tuning: Process in which the
parameters of a theory are adjusted
precisely to fit with observations.

Hierarchy: Existence of dimensionless
ratios between free parameters of a
theory which are not O(1).

Naturalness: Property of a theory, whose
parameters are neither hierarchical nor
fine-tuned.

Example: An albeit perfectly predictive
theory with the following parameters
• 1.26
• 0.8
• 3.21831287362871 · 1031

is both fine-tuned and hierarchical and
would thus be regarded as unnatural.

Solution: Acceptance and suffering,
Anthropic Principle, God or lack of deep
understanding.
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The Hierarchy problem

Figure 2: Radiative corrections due to top
quarks, gauge bosons and virtual Higgs
bosons.

SM: scalar particle masses not protected
against radiative corrections

Higgs mass: m2
h = 2µ2 + δm2

h with

δm2
h ' 3

4π2

(
−λ2

t +
g2

4
+

g2

8 cos2 θW

)
Λ2

due to loop diagrams with top quarks,
gauge bosons and virtual Higgs bosons.
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The Hierarchy problem

• Little Hierarchy problem
• Λ ∼ 10 TeV
• δm2

h ∼ (100 − 10 − 5) (200GeV)2

 Fine tuning ∼ 1%

• Big Hierarchy problem
• GUT scale 1015 GeV
• New particles X , Y and Φ

• δm2
h ∼ O

(
Λ2) ∼ m2

Φ ∼ 1030 GeV2

 Fine tuning ∼ 10−26

Figure 3: The little Hierarchy problem.
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Solution to the Hierarchy problem

Possible Solutions:
• Λ < 1 TeV
• Composite Higgs
• Extra dimensions
• New symmetry: SUSY

Figure 4: A supersketch.
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Three SUSYs

MSSM
SUSY with minimal
number of new particles
and interactions w.r.t. SM

NMSSM
MSSM with solved µ

problem, more Higgses
and parameter λ . 0.7.

λSUSY
NMSSM with augmented
validity λ . 2 and
interesting features.

m2
h ≤ m2

Z cos2 2β + δ2
t + λ2v2 sin2 2β

where δ2
t = 3

2π
m4

t
v2

[
ln
(mt̃1

mt̃2
m2

t

)
+

X2
t

mt̃1
mt̃2

(
1 − X2

t
12mt̃1

mt̃2

)]
7



Stop mass mixing

The squark and slepton masses are determined by the soft SUSY breaking
parameters mQi ,mUi ,mDi ,mLi ,mEi where i = 1 − 3 is the family index.

Stop sector
t̃L and t̃R have same quantum numbers and mix to t̃1 and t̃2 where mt̃1

< mt̃2

M 2
t̃ '

(
m2

Q3
+ m2

t mt (At − µ∗ cotβ)

mt (A∗
t − µ cotβ) m2

U3
+ m2

t

)

Assume no /CP in SUSY: At , µ ∈ R.
Define Xt ≡ At − µ cotβ and m2

t̃ ≡ mt̃1
mt̃2

No mixing: Xt = 0
Maximal mixing: Xt =

√
6 mt̃
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MSSM



Phenomenology of the MSSM Higgs bosons

Hu , Hd  8 real scalar fields:
3 absorbed into W± and Z ,
5 physical Higgs bosons:
h0, H 0, A0 and H±

For mA � mZ :

m2
h
∣∣
tree → m2

Z cos2 2β

Including radiative contribution:

m2
h = m2

Z cos2 2β + δ2
t Figure 5: MSSM Higgs mass spectrum in dependence

of mA for mt̃ = mt̃1
= mt̃2

= 2 TeV. 9



Multi-TeV stops in MSSM

Figure 6: mh in dependence of mt̃1
and Xt in MSSM

scenario where tanβ = 20.

Border of parameter space:
• Maximal mixing

Xt =
√

6 mt̃

• High tanβ = 20
• Else: Multi-TeV stops
• Highly unnatural

 How to quantize
unnaturalness?
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Fine tuning, quantized

Many different, reasonable
measures. In our case:

∆mh = max
pi

∣∣∣∣∂ lnm2
h

∂ ln pi

∣∣∣∣
pi :
• Messenger scale Λ

• Higgsino mass µ, Bµ

• Soft breaking mQ3 ,mU3

• Higgs doublet m2
Hu

,m2
Hd

• Trilinear coupling At

Contributions due to radiative corrections, e.g.

δm2
Hu = −3y2

t
8π2

(
m2

Q3 + m2
U3 + |At |2

)
ln

(
Λ

mt̃

)

∆ ∼ O(1) natural
∆ & 10 rather unnatural
∆ & 1000 fine-tuned

Or equivalently: Degree of fine tuning ≡ 1
∆
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Fine tuning in the MSSM

Figure 7: Necessary mt̃ to accommodate a 125GeV Higgs with iso-value curves for fine
tuning and mt̃1

in dependence of Xt in MSSM scenario with Λ = 10GeV. 12



Observable effects

Rγγ ≡
σ(gg → h)× Br(h → γγ)|MSSM
σ(gg → h)× Br(h → γγ)|SM

Heavy stop loops suppress the
Higgs-to-gluon coupling
⇒ A natural MSSM would lead to a

depleted event rate Rγγ

⇒ Expect effect of Rγγ = 80 − 90%
in natural theory.

Figure 8: Zoom-in of figure 7. Violet: Ratio of
gg → h → γγ event rate w.r.t. SM prediction.
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MSSM Result

Most natural parameter choice:

• Maximal mixing Xt =
√

6 mt̃
• Large vev ratio tanβ & 20
• Large stop mass mt̃ > 600GeV
• Large CP-uneven Higgs mass mA � mZ

No fine tuning better than O(1%) can be achieved, even with an ultra-low
messenger scale of Λ = 10 TeV. Small deviations, e.g. from maximal mixing,
increase the necessary stop masses quickly in a multi-TeV regime which would
render the theory highly unnatural.  

Is a more natural setting possible?
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NMSSM



The µ problem of the MSSM

MSSM: superpotential on GUT scale, soft breaking Lagrangian on EW scale.

However, the higgsino mass parameter µ enters the superpotential, even though
it should be on the EW scale, ironically giving rise to another hierarchy problem.

Solution:

µHuHd → (λS + µ̂)HuHd → (λ〈S〉+ µ̂)HuHd = µeffHuHd

Introduce singlet Higgs superfield S : MSSM→ NMSSM. For perturbativity up to the
GUT scale: λ . 0.7
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The extended superpotential and soft breaking terms

Superpotential:

W ⊃ (λS + µ)HuHd + MS
2 S2

Soft breaking term:

Vsoft ⊃ m2
Hu

|Hu|2 + m2
Hd

|Hd |2 +
m2

S |S |2 + (BµHuHd + λAλSHuHd + h.c.)

Note:

MS singlet mass
mS SUSY breaking mass

Phenomenology:
Added singlino S̃ , new A, new H .
Completely new mass hierarchy is
possible, due to singlet-doublet mixing.

m2
h ≤ m2

Z cos2 2β + λ2v2 sin2 2β + δ2
t

The new term is rather big for large
values of λ, so that no super heavy stops
are required
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New preferred parameter region

Figure 9: Higgs mass in dependence of tanβ, λ and
mt̃ in NMSSM scenario. The dashed lines include the
new λ2v2 term.

Other region of parameter space
naturally preferred
• Small tanβ . 2
• Large λ ∼ 0.7
• Reduced necessary δ2

t

• Mixing effects Xt reduced
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Exploration of parameter space

Figure 10: Necessary mt̃ to accommodate a 125GeV Higgs in dependence of Xt , λ and
tanβ in NMSSM scenario. For a good choice of parameters only modestly large stop
masses of mt̃1

> 300GeV are necessary, making the theory less fine-tuned eventually.
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Amount of necessary fine tuning in NMSSM

Figure 11: Necessary mt̃ for mh = 125GeV with iso-value curves for ∆mh in dependence of
Xt and tanβ in NMSSM. For tanβ = 2, ∆mh . 15 can be achieved, while tanβ = 5 requires
large stop masses and thus a worse fine tuning. 19



Optimal choice of parameters

∆mh ∼ 15 can be achieved in NMSSM with a particular choice of parameters, even
though this requires rather heavy stops with mt̃ > 400GeV. For less massive stops
with mt̃ ∼ 200GeV, a higher mixing and thus a worse ∆mh > 50 is necessary.

Figure 12: Necessary mt̃1
and fine tuning ∆mh to accommodate a 125GeV Higgs in

dependence of λ and Xt in NMSSM scenario. 20



Summary NMSSM and comparison with MSSM

We see that a substantially better degree of fine tuning of “only” 5 − 10% can be
achieved, however, also only at a border of the respective parameter space:

NMSSM:
• tanβ < 2
• Xt = 0
• mA = 0.5 TeV
• Λ = 10 TeV
• µeff = 200GeV
• λ ' 0.7, as large as possible

MSSM:
• tanβ > 20
• Xt =

√
6 mt̃

• mA = 1 TeV
• Λ = 10 TeV
• µ = 200GeV

What happens when λ > 0.7?
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λ-SUSY



λ-SUSY

What happens when λ > 0.7?

 Landau pole below the GUT scale, non-perturbative and unpredictive theory,
tempers the gauge coupling unification.  However, it can be shown, that these
problems become negligible up to 10 TeV as long as λ . 2: λ-SUSY.

m2
h ≤ m2

Z cos2 2β + λ2v2︸︷︷︸
(200−300GeV)2

sin2 2β + δ2
t

Singlet-doublet mixing becomes necessary!
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Singlet-doublett mixing

The two scalars s and h mix when the off-diagonal elements become too large

M2∣∣
tree =

(
m2

Z cos2 2β + λ2v2 sin2 2β λv(µ,MS ,Aλ)

λv(µ,MS ,Aλ) m2
S

)

Figure 13: The two scalar masses in
dependence of mS .

For a singlet soft breaking mass near mS = 500GeV
(λ = 2, tanβ = 2), mixing reduces mh from 280GeV to
the measured of value 125GeV. mS needs no fine
tuning, as can be seen by the low slope near the
reference point.
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Exploration of parameter space

Approach:
Fix a benchmark point with ∆mh = 5.2 in the
parameter space and change two parameters
while keeping mh = 125GeV constant

λ = 2 tanβ = 2
µ = 200GeV MS = 0GeV
mS = 510GeV mH+ = 470GeV

mQ3 = mU3 = 500GeV
At = Aλ = 0

Figure 14: mh and ∆mh as a function of
singlet mass MS and soft mass mS .
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Exploration of parameter space

Results:
• ∆mh increases quickly when mh drops
• ∆mh ∼ O(1) in a large region of
parameter space

• ⇔ mh largely independent of exact
choice of parameters

• Excluded: tachyonic Higgses, invisible
Higgs decay into neutralinos

Analog for the following graphs... Figure 15: mh and ∆mh as a function of
singlet mass MS and soft mass mS .
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Exploration of parameter space

Figure 16: mh and ∆mh as a function of λ and tanβ (left) as well as λ and the soft mass
mS (right). Along the 125GeV lines, ∆mh does not change strongly. 26



Properties of benchmark point and sparticle masses

Benchmark point:
Natural (∆mh = 5) Higgs boson with
125GeV due to θhs = 0.12
doublet-singlet mixing is favored.

mh2,h3 = 522GeV, mA1,A2 = 580GeV

The graph shows in dependence of
λ, that even Terascale sparticles are
allowed without contributing
dominantly to the fine tuning. Figure 17: Bounds on the natural sparticle

masses in dependence of λ. Here ∆v = 10 is
used to obtain more conservative limits. 27



Observational consequences

A particular Higgs phenomenology is expected. Especially, the important
Higgs-bottom coupling ξbb = y2

b/ y2
b
∣∣
SM changes. In SM: BR(h → bb) ' 58%.

ξbb|tree → 1 − |sin 4β| tanβ
(

λv
m+

H

)2
ξbb|tree → 1 + |sin 4β| tanβ

(
mZ
mA

)2
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Observational consequences

Figure 18: Iso-value curves for mh and Rγγ in
dependence of λ and tanβ.

Naturally favored parameter region:
Expect depleted Higgs-bottom
coupling ξbb ' 0.3 Enhancement
of the other final states, e.g.
enhanced γγ event rate
Rγγ = 130 − 150%.
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Summary and review



Conclusion

Good news: mh = 125.10 ± 0.14GeV The presented analysis is relevant.

• MSSM: 1/∆mh = 1% at boundary of parameter space
• NMSSM: 1/∆mh = 5 − 10% at boundary of parameter space
• λ-SUSY: 1/∆mh = 10 − 20% in large region of parameter space

• Stop masses don’t have to be heavy
• However, stops can be as heavy as 1.5 TeV before contributing to ∆mh

• Theory is falsifiable with current methods: Rγγ ' 150%
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Critics and open questions

• Domain wall problem of the
added singlet Higgs S

• CP phases are not included
• Impact of λ ' 2 on other
parts of physics (Very early
universe, cosmic rays,
astrophysics, ...)
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Thank you for your attention!
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