A natural SUSY Higgs near 125 GeV

Costanza Carrivale & Carlo Tasillo January 17, 2020

Complements of particle physics, Università degli Studi di Perugia

Introduction: Fine tuning, hierarchy and naturalness

Figure 1: Fine tuning in a nutshell.

Fine tuning: Process in which the parameters of a theory are adjusted precisely to fit with observations.

Hierarchy: Existence of dimensionless ratios between free parameters of a theory which are not $\mathcal{O}(1)$.

Naturalness: Property of a theory, whose parameters are neither *hierarchical* nor *fine-tuned*.

Fine tuning: Process in which the parameters of a theory are adjusted precisely to fit with observations.

Hierarchy: Existence of dimensionless ratios between free parameters of a theory which are not $\mathcal{O}(1)$.

Naturalness: Property of a theory, whose parameters are neither *hierarchical* nor *fine-tuned*.

Example: An albeit perfectly predictive theory with the following parameters

- 1.26
- · 0.8
- $\cdot \ \ 3.21831287362871 \cdot 10^{31}$

is both fine-tuned and hierarchical and would thus be regarded as *unnatural*.

Solution: Acceptance and suffering, Anthropic Principle, God or lack of deep understanding.

Figure 2: Radiative corrections due to top quarks, gauge bosons and virtual Higgs bosons.

SM: scalar particle masses not protected against radiative corrections

Higgs mass:
$$m_h^2 = 2\mu^2 + \delta m_h^2$$
 with

$$\delta m_h^2 \simeq \frac{3}{4\pi^2} \left(-\lambda_t^2 + \frac{g^2}{4} + \frac{g^2}{8\cos^2\theta_{\rm W}} \right) \Lambda^2 \label{eq:deltambda}$$

due to loop diagrams with top quarks, gauge bosons and virtual Higgs bosons.

\cdot Little Hierarchy problem

- $\cdot \ \Lambda \sim 10 \, {\rm TeV}$
- $\delta m_h^2 \sim (100 10 5) (200 \, {\rm GeV})^2$
- $\rightsquigarrow~$ Fine tuning $\sim 1\,\%$

\cdot Big Hierarchy problem

- + GUT scale $10^{15}\,{
 m GeV}$
- $\cdot\,$ New particles X, Y and Φ
- $\delta m_h^2 \sim \mathcal{O}\left(\Lambda^2\right) \sim m_\Phi^2 \sim 10^{30} \, \mathrm{GeV}^2$
- \rightsquigarrow Fine tuning $\sim 10^{-26}$

Figure 3: The little Hierarchy problem.

Solution to the Hierarchy problem

Possible Solutions:

- $\cdot \ \Lambda < 1 \, {\rm TeV}$
- Composite Higgs
- Extra dimensions
- New symmetry: SUSY

Figure 4: A supersketch.

MSSM

SUSY with minimal number of new particles and interactions w.r.t. SM

NMSSM

MSSM with solved μ problem, more Higgses and parameter $\lambda \lesssim 0.7$.

λSUSY

NMSSM with augmented validity $\lambda \lesssim 2$ and interesting features.

$$m_h^2 \le m_Z^2 \cos^2 2\beta + \delta_t^2 + \lambda^2 v^2 \sin^2 2\beta$$

where $\delta_t^2 = \frac{3}{2\pi} \frac{m_t^4}{v^2} \left[\ln \left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2} \right) + \frac{X_t^2}{m_{\tilde{t}_1} m_{\tilde{t}_2}} \left(1 - \frac{X_t^2}{12m_{\tilde{t}_1} m_{\tilde{t}_2}} \right) \right]$

The squark and slepton masses are determined by the soft SUSY breaking parameters $m_{Q_i}, m_{U_i}, m_{D_i}, m_{L_i}, m_{E_i}$ where i = 1 - 3 is the family index.

Stop sector

 $ilde{t}_L$ and $ilde{t}_R$ have same quantum numbers and mix to $ilde{t}_1$ and $ilde{t}_2$ where $m_{ ilde{t}_1} < m_{ ilde{t}_2}$

$$M_{\tilde{t}}^{2} \simeq \begin{pmatrix} m_{Q_{3}}^{2} + m_{t}^{2} & m_{t} \left(A_{t} - \mu^{*} \cot \beta \right) \\ m_{t} \left(A_{t}^{*} - \mu \cot \beta \right) & m_{U_{3}}^{2} + m_{t}^{2} \end{pmatrix}$$

Assume no CP in SUSY: $A_t, \mu \in \mathbb{R}$. Define $X_t \equiv A_t - \mu \cot \beta$ and $m_{\tilde{t}}^2 \equiv m_{\tilde{t}_1} m_{\tilde{t}_2}$ No mixing: $X_t = 0$ Maximal mixing: $X_t = \sqrt{6} m_{\tilde{t}}$

MSSM

 H_u , $H_d \rightarrow 8$ real scalar fields: 3 absorbed into W^{\pm} and Z, 5 physical Higgs bosons: h^0 , H^0 , A^0 and H^{\pm}

For $m_A \gg m_Z$:

$$m_h^2 \big|_{\text{tree}} o m_Z^2 \cos^2 2\beta$$

Including radiative contribution:

$$m_h^2 = m_Z^2 \cos^2 2\beta + \delta_t^2$$

Figure 5: MSSM Higgs mass spectrum in dependence of m_A for $m_{\tilde{t}} = m_{\tilde{t}_1} = m_{\tilde{t}_2} = 2$ TeV.

Multi-TeV stops in MSSM

Figure 6: m_h in dependence of $m_{\tilde{t}_1}$ and X_t in MSSM scenario where $\tan \beta = 20$.

Border of parameter space:

• Maximal mixing

 $X_t = \sqrt{6} \ m_{\tilde{t}}$

- · High $\tan\beta=20$
- Else: Multi-TeV stops
- Highly unnatural

↔ How to quantize unnaturalness? Δ_{m_h}

Many different, reasonable measures. In our case:

Contributions due to radiative corrections, e.g.

$$= \max_{p_i} \left| \frac{\partial \ln m_h^2}{\partial \ln p_i} \right| \qquad \qquad \delta m_{H_u}^2 = -\frac{3y_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{U_3}^2 + |A_t|^2 \right) \ln \left(\frac{\Lambda}{m_{\tilde{t}}} \right)$$

 p_i :

- $\cdot\,$ Messenger scale Λ
- Higgsino mass μ , $B\mu$
- Soft breaking m_{Q_3}, m_{U_3}
- \cdot Higgs doublet $m^2_{H_u}, m^2_{H_d}$
- Trilinear coupling A_t

 $\Delta \sim \mathcal{O}(1)$ natural

- $\Delta\gtrsim~10~$ rather unnatural
- $\Delta\gtrsim~1000$ fine-tuned

Or equivalently: Degree of fine tuning $\equiv \frac{1}{\Delta}$

Fine tuning in the MSSM

Figure 7: Necessary $m_{\tilde{t}}$ to accommodate a 125 GeV Higgs with iso-value curves for fine tuning and $m_{\tilde{t}_1}$ in dependence of X_t in MSSM scenario with $\Lambda = 10$ GeV.

$$R_{\gamma\gamma} \equiv \frac{\sigma(gg \to h) \times \mathrm{Br}(h \to \gamma\gamma)|_{\mathrm{MSSM}}}{\sigma(gg \to h) \times \mathrm{Br}(h \to \gamma\gamma)|_{\mathrm{SM}}}$$

Heavy stop loops suppress the Higgs-to-gluon coupling

- \Rightarrow A natural MSSM would lead to a depleted event rate $R_{\gamma\gamma}$
- $\Rightarrow\,$ Expect effect of $R_{\gamma\gamma}=80-90\%$ in natural theory.

Figure 8: Zoom-in of figure 7. Violet: Ratio of $gg \rightarrow h \rightarrow \gamma\gamma$ event rate w.r.t. SM prediction.

MSSM Result

Most *natural* parameter choice:

- Maximal mixing $X_t = \sqrt{6} m_{\tilde{t}}$
- + Large vev ratio $\tan\beta\gtrsim 20$
- + Large stop mass $m_{\tilde{t}} > 600\,{\rm GeV}$
- Large CP-uneven Higgs mass $m_A \gg m_Z$

No fine tuning better than $\mathcal{O}(1\%)$ can be achieved, even with an ultra-low messenger scale of $\Lambda = 10$ TeV. Small deviations, e.g. from maximal mixing, increase the necessary stop masses quickly in a multi-TeV regime which would render the theory highly unnatural. \oint

Is a more natural setting possible?

NMSSM

MSSM: superpotential on GUT scale, soft breaking Lagrangian on EW scale.

However, the higgsino mass parameter μ enters the superpotential, even though it should be on the EW scale, ironically giving rise to another hierarchy problem.

Solution:

$$\mu H_u H_d \to (\lambda S + \hat{\mu}) H_u H_d \to (\lambda \langle S \rangle + \hat{\mu}) H_u H_d = \mu_{\text{eff}} H_u H_d$$

Introduce singlet Higgs superfield S: MSSM \rightarrow NMSSM. For perturbativity up to the GUT scale: $\lambda \lesssim 0.7$

Superpotential:

$$W \supset (\lambda S + \mu) H_u H_d + \frac{M_S}{2} S^2$$

Soft breaking term:

$$\begin{split} V_{\rm soft} \supset m_{H_u}^2 \, |H_u|^2 + m_{H_d}^2 \, |H_d|^2 \, + \\ m_S^2 \, |S|^2 + (B \mu H_u H_d + \lambda A_\lambda S H_u H_d + {\rm h.c.}) \end{split}$$

Note:

 M_S singlet mass m_S SUSY breaking mass

Phenomenology:

Added singlino \tilde{S} , new A, new H. Completely new mass hierarchy is possible, due to singlet-doublet mixing.

$$m_h^2 \le m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \delta_t^2$$

The new term is rather big for large values of λ , so that no super heavy stops are required

New preferred parameter region

Figure 9: Higgs mass in dependence of $\tan \beta$, λ and $m_{\tilde{t}}$ in NMSSM scenario. The dashed lines include the new $\lambda^2 v^2$ term.

Other region of parameter space naturally preferred

- Small $\tan\beta \lesssim 2$
- + Large $\lambda \sim 0.7$
- Reduced necessary δ_t^2
- Mixing effects X_t reduced

Figure 10: Necessary $m_{\tilde{t}}$ to accommodate a 125 GeV Higgs in dependence of X_t , λ and $\tan \beta$ in NMSSM scenario. For a good choice of parameters only modestly large stop masses of $m_{\tilde{t}_1} > 300$ GeV are necessary, making the theory less fine-tuned eventually.

Amount of necessary fine tuning in NMSSM

Figure 11: Necessary $m_{\tilde{t}}$ for $m_h = 125 \text{ GeV}$ with iso-value curves for Δ_{m_h} in dependence of X_t and $\tan \beta$ in NMSSM. For $\tan \beta = 2$, $\Delta_{m_h} \leq 15$ can be achieved, while $\tan \beta = 5$ requires large stop masses and thus a worse fine tuning.

Optimal choice of parameters

 $\Delta_{m_h} \sim 15$ can be achieved in NMSSM with a particular choice of parameters, even though this requires rather heavy stops with $m_{\tilde{t}} > 400$ GeV. For less massive stops with $m_{\tilde{t}} \sim 200$ GeV, a higher mixing and thus a worse $\Delta_{m_h} > 50$ is necessary.

Figure 12: Necessary $m_{\tilde{t}_1}$ and fine tuning Δ_{m_h} to accommodate a 125 GeV Higgs in dependence of λ and X_t in NMSSM scenario.

Summary NMSSM and comparison with MSSM

We see that a substantially better degree of fine tuning of "only" 5 - 10 % can be achieved, however, also only at a border of the respective parameter space:

NMSSM:

- $\cdot \ \tan\beta < 2$
- $X_t = 0$
- $m_A = 0.5 \,\mathrm{TeV}$
- $\cdot \ \Lambda = 10 \, {\rm TeV}$
- $\cdot \ \mu_{\rm eff} = 200 \, {\rm GeV}$
- $\cdot \ \lambda \simeq 0.7$, as large as possible

MSSM:

- $\cdot \ \tan\beta > 20$
- $\cdot \ X_t = \sqrt{6} \ m_{\tilde{t}}$
- $m_A = 1 \text{ TeV}$
- $\cdot \ \Lambda = 10 \, {\rm TeV}$
- $\cdot \ \mu = 200 \, {\rm GeV}$

Summary NMSSM and comparison with MSSM

We see that a substantially better degree of fine tuning of "only" 5 - 10 % can be achieved, however, also only at a border of the respective parameter space:

NMSSM:

- $\cdot \ \tan\beta < 2$
- $X_t = 0$
- $m_A = 0.5 \,\mathrm{TeV}$
- $\cdot \ \Lambda = 10 \, {\rm TeV}$
- $\cdot \ \mu_{\rm eff} = 200 \, {\rm GeV}$
- $\cdot \ \lambda \simeq 0.7$, as large as possible

What happens when $\lambda > 0.7$?

MSSM:

- $\cdot \ \tan\beta > 20$
- $X_t = \sqrt{6} m_{\tilde{t}}$
- $m_A = 1 \text{ TeV}$
- $\cdot \ \Lambda = 10 \, {\rm TeV}$
- $\cdot \ \mu = 200 \, {\rm GeV}$

 $\lambda\text{-}\mathsf{SUSY}$

What happens when $\lambda > 0.7$?

→ Landau pole below the GUT scale, non-perturbative and unpredictive theory, tempers the gauge coupling unification. $\frac{4}{2}$ However, it can be shown, that these problems become negligible up to 10 TeV as long as $\lambda \leq 2$: λ -SUSY.

$$m_h^2 \le m_Z^2 \cos^2 2\beta + \underbrace{\lambda^2 v^2}_{(200-300 \,\, {\rm GeV})^2} \sin^2 2\beta + \delta_t^2$$

Singlet-doublet mixing becomes necessary!

Singlet-doublett mixing

The two scalars s and h mix when the off-diagonal elements become too large

$$\mathcal{M}^2\big|_{\text{tree}} = \begin{pmatrix} m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta & \lambda v(\mu, M_S, A_\lambda) \\ \lambda v(\mu, M_S, A_\lambda) & m_S^2 \end{pmatrix}$$

For a singlet soft breaking mass near $m_S = 500 \text{ GeV}$ ($\lambda = 2$, $\tan \beta = 2$), mixing reduces m_h from 280 GeV to the measured of value 125 GeV. m_S needs no fine tuning, as can be seen by the low slope near the reference point.

Figure 13: The two scalar masses in dependence of m_S .

Approach:

Fix a benchmark point with $\Delta_{m_h} = 5.2$ in the parameter space and change two parameters while keeping $m_h = 125$ GeV constant

$\lambda = 2$	$\tan\beta=2$
$\mu=200{\rm GeV}$	$M_S=0~{ m GeV}$
$m_S=510{\rm GeV}$	$m_{H^+} = 470{\rm GeV}$
$m_{Q_3} = m_{U_3} = 500 {\rm GeV}$	
$A_t = A_\lambda = 0$	

Figure 14: m_h and Δ_{m_h} as a function of singlet mass M_S and soft mass m_S .

Results:

- + Δ_{m_h} increases quickly when m_h drops
- $\Delta_{m_h} \sim \mathcal{O}(1)$ in a large region of parameter space
- $\Leftrightarrow m_h$ largely independent of exact choice of parameters
- Excluded: tachyonic Higgses, invisible Higgs decay into neutralinos

Analog for the following graphs...

Figure 15: m_h and Δ_{m_h} as a function of singlet mass M_S and soft mass m_S .

Figure 16: m_h and Δ_{m_h} as a function of λ and $\tan \beta$ (left) as well as λ and the soft mass m_S (right). Along the 125 GeV lines, Δ_{m_h} does not change strongly.

Properties of benchmark point and sparticle masses

Benchmark point:

Natural ($\Delta_{m_h} = 5$) Higgs boson with 125 GeV due to $\theta_{hs} = 0.12$ doublet-singlet mixing is favored.

 $m_{h_2,h_3} = 522 \, {\rm GeV}$, $m_{A_1,A_2} = 580 \, {\rm GeV}$

The graph shows in dependence of λ , that even Terascale sparticles are allowed without contributing dominantly to the fine tuning.

Figure 17: Bounds on the *natural* sparticle masses in dependence of λ . Here $\Delta_v = 10$ is used to obtain more conservative limits.

Observational consequences

A particular Higgs phenomenology is expected. Especially, the important Higgs-bottom coupling $\xi_{bb} = y_b^2 / \left| y_b^2 \right|_{SM}$ changes. In SM: BR $(h \to bb) \simeq 58 \%$.

28

Observational consequences

Naturally favored parameter region: Expect depleted Higgs-bottom coupling $\xi_{bb} \simeq 0.3 \rightsquigarrow$ Enhancement of the other final states, e.g. enhanced $\gamma\gamma$ event rate $R_{\gamma\gamma} = 130 - 150 \%$.

Figure 18: Iso-value curves for m_h and $R_{\gamma\gamma}$ in dependence of λ and $\tan \beta$.

Summary and review

Good news: $m_h = 125.10 \pm 0.14 \,\text{GeV} \rightarrow$ The presented analysis is relevant.

- MSSM: $1/\Delta_{m_h} = 1\%$ at boundary of parameter space
- NMSSM: $1/\Delta_{m_h} = 5 10 \,\%$ at boundary of parameter space
- λ -SUSY: $1/\Delta_{m_h} = 10 20\%$ in large region of parameter space
 - Stop masses don't have to be heavy
 - However, stops can be as heavy as 1.5 TeV before contributing to Δ_{m_h}
 - + Theory is falsifiable with current methods: $R_{\gamma\gamma}\simeq 150\,\%$

Critics and open questions

- Domain wall problem of the added singlet Higgs *S*
- \cdot CP phases are not included
- Impact of $\lambda \simeq 2$ on other parts of physics (Very early universe, cosmic rays, astrophysics, ...)

Thank you for your attention!

Literature

- Beyond the Standard Model of Elementary Particle Physics, Y. Nagashima, 2014
- The Higgs sector of supersymmetric theories and the implications for high-energy colliders, A. Djouadi, 2008, arXiv: 0810.2439v2
- Anatomy of maximal stop mixing in the MSSM, F. Brümmer, S. Kraml, S. Kulkarni, 2012, arXiv: 1204.5977v2
- A natural SUSY Higgs near 125 GeV, L. J. Hall, D. Pinner, J. T. Rudermann, 2012, arXiv: 1112.2703v2, DOI: 10.1007/JHEP04(2012)131
- **Precision Unification in λSUSY with a 125 GeV Higgs**, E. Hardy, J. March-Russell, J. Unwin, 2012, arXiv: 1207.1435v2
- Review of Particle Physics, M. Tanabashi *et al.* (Particle Data Group), Phys. Rev. D **98**, 030001 (2018) and 2019 update.