
L I S T E N I N G TO H OT DA R K S E C TO R
P H A S E T R A N S I T I O N S

master’s thesis in physics
carlo tasillo

reviewers:
Prof. Dr. Felix Kahlhöfer & Prof. Dr. Julien Lesgourgues

The present work was submitted to:

Faculty of Mathematics, Computer Science and Natural Sciences
Institute for Theoretical Particle Physics and Cosmology

RWTH Aachen University

21. May 2021



A B S T R A C T

This thesis focuses on stochastic gravitational wave backgrounds from
first-order phase transitions in the early Universe driven by a dark
sector beyond the Standard Model (SM). In particular, we consider
the case of a dark sector hotter than the thermal bath of SM particles,
which leads to a large enhancement of gravitational wave signals. The
example of an additional U(1) gauge extension to the SM, which is
spontaneously broken at high energies in a first-order phase transition,
is studied in detail. We also calculate the dilution of the resulting
gravitational wave signal caused by the entropy injection from massive
dark Higgs decays into SM particles. Furthermore, the possibility of
a phase of cannibalism in the dark sector is taken into consideration.
A new extension to CosmoTransitions is presented that can be used
to calculate signal-to-noise ratios for the detection of stochastic grav-
itational wave backgrounds from dark sector phase transitions with
respect to current and future GW interferometers such as LISA or the
Einstein Telescope.
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N OTAT I O N

In this work, Einstein’s summation convention ∑µ aµ bµ ≡ aµ bµ and
the Dirac slash notation /k ≡ kµ γµ are used. If not stated otherwise,
natural units are employed, in which c = h̄ = kB = 1. Further, space-
time indices are written as Greek letters, while spacial vectors are
printed in boldface (x) with components denoted by Latin indices (xi).
The flat Minkowski metric is chosen as ηµν ≡ diag (1, −1, −1, −1),
where the 0-component corresponds to the time variable (i. e. xµ =(

x0, x
)

with x0 = t). Partial derivatives with respect to a generic
variable x are abbreviated as ∂x; space-time derivatives read ∂µ =

∂
∂xµ = (∂t, ∂i), while total derivatives with respect to time are denoted
by ḟ (t) = d f

dt . A particle’s four-momentum is defined as pµ = (E, p),
such that pµ xµ = E t− p · x and d4 p = dE d3 p.

The Einstein tensor is given by Gµν ≡ Rµν − 1
2 R gµν with the Ricci

scalar R ≡ Rµ
µ and the Ricci tensor Rµν ≡ Rγ

µγν, which is, in turn,
defined over the Riemann tensor

Rµ
ναβ ≡ ∂α Γµ

νβ − ∂β Γµ
να + Γµ

αρ Γρ
νβ − Γρ

να Γµ
βρ ,

where the Christoffel symbols

Γα
µν ≡

1
2

gαβ
(
∂µ gβν + ∂ν gβµ − ∂β gµν

)

can be calculated as space-time derivatives of the metric gµν. To
simplify the Einstein equations, the reduced Planck mass Mpl =

(8 π G)−1/2 ≈ 2.4 · 1018 GeV is employed, where G is Newton’s grav-
itational constant. By default, energies, temperatures, masses, and
momenta are all given in units of eV ≈ 1.6 · 10−19 J, whereas spacial
and temporal distances come with inverse energy units.



1 I N T R O D U C T I O N

Little more than 100 years ago, in 1916, Albert Einstein first predicted
the existence of gravitational waves (GWs) as a consequence of his
theory of General Relativity (GR) [1, 2]. However, due to the relative A short history of

GW astronomyweakness of gravity, it took until 2016 to finally confirm that Einstein’s
conclusion was right: The LIGO collaboration observed a merger of
two black holes with about 30 solar masses each, at a distance of 1.3
billion light-years from Earth [3]. This observation can be seen as the
starting shot for the era of GW astronomy. Until today, we have seen
more than 50 individual signals of compact binary coalescences using
a quickly growing family of GW interferometers [4, 5]. Due to the finite
velocity of propagation of these waves, each event works as a puzzle
piece to broaden our intellectual and observational horizon.

Our findings from the measurements of the cosmic microwave back-
ground (CMB) state that our Universe had its beginning in the hot
“Big Bang” era about which we, however, still know very little for cer- Testing our models

of the very early
Universe

tain. Interpreting the temperature anisotropies of the photons coming
from this period, when our Universe was just some 380,000 years old,
allowed us to define our current concordance model of cosmology
[6]. For testing our theories of the early cosmos and for unraveling
the flaws of the so-called Λ cold dark matter (ΛCDM) model, it is of
paramount importance to directly observe what happened before the
emission of the CMB. It is hence highly anticipated that the detection of
a stochastic gravitational wave background (SGWB) coming from times
before the emission of the CMB will reduce this gap and revolutionize
what we know about our Universe [7].

Just in September of the last year, we might have found the first
hint for an SGWB in the 12.5 years data analysis of the NANOGrav Stochastic

gravitational wave
backgrounds

collaboration [8]. Although the detected GWs could be explained by
an astrophysical background, they could as well stem from very early
Universe processes [9]. In any case their detection can be seen as
an auspicious proof of principle for what will be possible with the
planned space interferometers to be launched in the next years and
decades. There exist only a few currently known processes in the very
early Universe that could have produced an observable SGWB, e. g.
time-varying scalar fields, inflation, kinks and cusps in cosmic strings,
and first-order phase transitions (FOPTs) [10]. A detection of a signal
coming from one of these processes would have a profound impact on
our knowledge of cosmology and high-energy physics. Their detection

1



2 introduction

is however complicated by the astrophysical confusion noise of many
weak, independent, and unresolved sources like binary black holes or
neutron star mergers [10, 11].

In this thesis, a novel effect boosting the signal strengths of an SGWB

from FOPTs is investigated. Assuming that the phase transition takesBoosting and
diluting GW signals

from dark sectors
place in a dark sector (DS) that is initially decoupled from the particles
of the SM, it has to be taken into account that the thermal DS and
SM baths will in general have different temperature due to the lack
of interaction between them [12]. It is shown that DS temperatures
above that of the SM bath yield signal strengths that can be orders of
magnitude higher than those in the case of a common temperature.
Finally, the DS cannot be fully decoupled from the SM bath for all times,
since otherwise the lightest dark sector particles could not decay. In
that case, the DS would store too much energy and overclose the
Universe, leading to its early collapse. This issue can be circumvented
by allowing for a decay mechanism of the lightest dark sector state
to the SM. Upon this decay, a considerable amount of entropy can
be injected into the SM bath which will inevitably dilute frozen-out
abundances such as dark matter [13] or the SGWB that has just been
produced. This can be understood as a second, independent effect.

To demonstrate both effects, a simple particle physics model for a
hot dark sector phase transition is used: The SM is extended by anThe investigated

dark sector model additional U(1)D gauge group whose respective gauge boson becomes
massive when a complex scalar charged under the gauge group ac-
quires a vacuum expectation value (VEV). The gauge boson is referred
to as a “dark photon” due to its lack of interaction with the SM particle
species and its similar description with respect to the SM photon, being
the gauge boson of the U(1)EM group for electromagnetism. The scalar
field, whose real part becomes massive when it acquires a VEV, is
referred to as a “dark Higgs field” by analogy to the SM Higgs field,
with which it can mix, giving rise to a decay channel of the dark Higgs
boson into SM particles. Mass mixing represents the only effective
coupling between the DS and SM particles, which are assumed to carry
no charge of the “dark” gauge group U(1)D.

This work is structured as follows: Chapter 2 gives an overview of the
theoretical foundations that were used for the subsequent analysis.
This comprises an overview of particle cosmology in the early UniverseStructure of this

thesis as well as an introduction to SGWBs and their production through
FOPTs. In chapter 3, we study the thermal evolution of a DS after it
featured an FOPT and discuss the theoretical origins of the two effects
mentioned above. The findings are then applied to the proposed dark
photon model in chapter 4. A conclusion and discussion of the general
results can be found in chapter 5. Finally, a detailed description of
our to-be-published tool for calculating SGWB spectra for DS phase
transitions is provided in Appendix A.



2 T H E O R E T I C A L B A C KG R O U N D

In this chapter the theoretical foundation for what follows is discussed.
The overview is organized in five parts: First, a general picture of
what we know and do not know about the early Universe is drawn
in section 2.1. A closer look on the quantitative description of this
period using the Friedmann and relativistic Boltzmann equations
is given in section 2.2. In section 2.3, finite-temperature effects in
quantum field theory (QFT) are investigated with which the effective
potential of a given particle physics model can be calculated. The
effective potential is then used to study FOPTs in section 2.4. Finally,
the connection between GWs and FOPTs and how the resulting SGWB

can be determined is outlined in section 2.5.

2.1 the early universe

Due to the speed of light being finite, a look into space is always a look
into the past. The place where we can currently look farthest is called
the surface of last scattering, which is depicted artistically in figure
2.1 by a thin red line. What happened since then, when the CMB had The CMB

been emitted, is the formation of stars, galaxies and complex structure
and, lately, the evolution of life being able to theorize about its origins.
What happened during and before all this is within the domain of
research of cosmology. The following review of the different events
that happened until today is based on the references [6, 15].

Our current understanding of what has happened before the emission
of the CMB stems to a large extent from the precise investigation
of the temperature variations across the surface of last scattering
measured by the Planck collaboration [16]. Our best model for the
cosmic evolution is the ΛCDM model, which is based on only six “The Big Bang

theory”parameters, describing the matter content of the Universe, its present
rate of expansion, the precise form of the surface of last scattering and
the physical properties of a period called inflation [15].

3



4 theoretical background

Figure 2.1: An artistic overview of the observable Universe on logarithmic
scales taken from reference [14].

2.1.1 A chronology of the Universe

The earliest event, about 13.8 billion years ago [16], that is described
within the ΛCDM model is inflation. In a period that lasted approxi-Inflation

mately 10−33 s, space expanded by an enormous factor of at least 1026.
Inflation is thought to have been triggered by the phase transition that
broke the so-called grand unified theory (GUT) at some temperature
below 1015 GeV. In that process, a scalar field (called “the inflaton”) ac-
quired a VEV that resulted in a repulsive force, starting the accelerated
expansion of space. The process ended with the decay of the inflaton
field into the dense, hot plasma of frequently interacting elementary
particles [6]. In a process called “baryogenesis” (still being an active
field of research) the asymmetry of matter and anti-matter has then
been produced. A second phase transition followed, which is referred
to as the electroweak phase transition (EWPT), during which the HiggsBaryogenesis and the

electroweak phase
transition

boson of the SM acquired a VEV, giving mass to before massless par-
ticle species through the Higgs mechanism. Several models explain
baryogenesis by a first-order EWPT, requiring extensions to the SM in
which the EWPT is a smooth phase transition [17].
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Today
t ∼ 13.8 · 109 yr

Recombination
t ∼ 380 · 103 yr

Matter-radiation equality
t ∼ 60 · 103 yr

Big Bang nucleosynthesis
t ∼ 3 min

Electron-positron annihilation
t ∼ 6 s

Neutrino decoupling
t ∼ 1 s

QCD phase transition
t ∼ 20 µs

Electroweak phase transition
t ∼ 10 ps

Baryogenesis

Inflation

T ∼ 240 µeV

T ∼ 250 meV

T ∼ 750 meV

T ∼ 100 keV

T ∼ 500 keV

T ∼ 1 MeV

T ∼ 150 MeV

T ∼ 150 GeV

?

?

Figure 2.2: A timeline of important events in cosmology. The quoted tem-
peratures refer to the SM bath, which will be defined in chapter
3.1.

The subsequent events (see Figure 2.2) can be described by considering
a thermal equilibrium between the different particle species of the SM

and their successive deviation from it. As first, quarks and gluons lose QCD phase
transition, neutrino
decoupling and
electron-positron
annihilation

their asymptotic freedom and confine to hadrons, i. e. baryons and
mesons, in a process known as the quantum chromodynamics (QCD)
phase transition. Then, neutrinos decouple from the remaining thermal
bath of SM particles. Due to their only weak coupling to other particle
species and very low masses, their decoupling happens so early that
they remain relativistic afterwards. When the temperature of the
photon bath drops below the mass of electrons and positrons, both
species become Boltzmann suppressed. Since entropy is conserved
during the expansion (as will be described in section 2.2.2.5 more
thoroughly), the electrons’ and positrons’ entropy is injected into
the photon bath, reheating it with respect to the already decoupled
neutrinos [6].

About three minutes after the end of inflation, protons and neutrons
combine to the first (still ionized) elements, i. e. helium, deuterium and
lithium, during the Big Bang nucleosynthesis (BBN). The observation of Big Bang

nucleosynthesisvery far (hence, very young) galaxies allows us to check the produced
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Figure 2.3: A sketch of the temporal evolution of the contributions to the
Universe’s energy density. Inflation is followed by phases of
radiation and matter domination. Today’s vacuum domination
due to some still unknown form of dark energy began only
recently a new period of accelerated expansion of the Universe.

element abundances, giving us the very first cosmological constraints
for beyond the Standard Model (BSM) physics.

About 60,000 years after the end of inflation, non-relativistic matter
becomes the most dominant part of the energy density content of the
Universe. This is due to the different time evolutions of relativisticMatter-radiation

equality and non-relativistic matter: While a non-relativistic species’ energy
density decreases only due to its dilution during the expansion of the
Universe, relativistic particles (which are conventionally referred to
as “radiation” as opposed to “matter”) also lose energy due to their
individual redshift (see Figure 2.3).

Finally, when the Universe has cooled enough for electrons to bound
to atomic cores, photons can propagate freely through the now no
longer opaque Universe. The first “snapshot” of it is what we today
call the CMB. In the remaining billions of years until today, matterRecombination and

vacuum domination begins to clump, forming astrophysical objects like our Sun. Only a
few billion years ago, vacuum energy became (again) the dominant
energy contribution and led anew to an accelerated expansion of space
(see Figure 2.4). Recently, life started to evolve somewhere in the Milky
Way, which learned how to organize itself and how to do science to
ponder efficiently over its place in the world.
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Baryonic matter
5%

Dark matter

26%

Dark energy

69%

Figure 2.4: Today’s energy density content of the Universe as it was mea-
sured by the Planck collaboration [16].

2.1.2 Shortcomings of our fundamental theories

In some sense, the presented cosmic timeline is still speculative: An
inflaton particle has never been directly measured in a collider ex-
periment, and we still are pretty much in the dark concerning what
a potential GUT or even more fundamental theories should look like.
These problems are however not the only ones. The major part of
perplexity connected to the ΛCDM model comes with its name: As was
found in the analysis of the CMB anisotropies measured by the Planck
collaboration [16] (see Figure 2.4), about 95% of our Universe’s energy
density is “dark”, hence unknown, to us. We know that there has Dark matter and

dark energyto be a lot more matter (i. e., dark matter (DM)) in our galaxies than
optically visible, but we do not know which particle species could
account for this. Further, we know that there is this amount of vacuum
energy that currently re-accelerates the expansion of our Universe (i. e.,
dark energy (DE)), but we do not know where it comes from. Since
both problems are so urging, they were combined in the name of our
concordance model of cosmology: Λ is some generic vacuum energy,
while “CDM” accounts for cold (i. e., slowly moving) DM, which is
favored by theories explaining the cosmic structure formation [18].
Of course, there exist also a lot of other problems, namely hierarchy
problems in the SM [19], missing neutrino masses [20], the origin of
the matter-antimatter asymmetry [21], and the Hubble tension [16], to
just name a few of them.

To explain these shortcomings of our fundamental theories, it appears
necessary to add new particle species to the SM. Currently, there exist
a lot of potential explanations for DM, the most famous one being the
Weakly Interacting Massive Particle (WIMP) idea, which is however
strongly constrained [22]. Thus, there is need for alternative expla-
nations beyond the WIMP paradigm. DSs showed to be promising for
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comprising new candidates for DM [23]. At the same time, the search
for new physics at colliders is getting closer to the border of becoming
economically unfeasible. All this, together with the observation that
large parts of the already known history of the Universe showed to beMotivation for

investigating dark
sectors

a series of phase transitions and the upcoming possibilities to detect
SGWBs, motivates the study of extensions to the SM testable by GW

measurements. But before getting into details about the physics of
cosmic phase transitions, it is necessary to understand how to de-
scribe quantitatively the thermodynamics of different particle species
in an expanding Universe. The next section is aimed at providing the
necessary background.

2.2 particle thermodynamics in an expand-
ing universe

At early times, the evolution of the Universe was determined by local
thermal equilibrium (LTE)—however, what makes life interesting are
the departures from equilibrium. Without the deviations from it, the
present Universe would likely just be homogeneous, cold and dull. To
study what determined the particle dynamics in the early Universe,
it is thus necessary to first describe the homogeneous Universe (sub-
section 2.2.1) that will act as a stage for what happens on it when one
includes interacting particle species (subsection 2.2.2).

2.2.1 The expanding Universe

According to GR, our Universe can be described by the Einstein field
equations

m2
Pl Gµν = Tµν . (2.1)

Here, Gµν is the Einstein tensor which is a complicated, nonlinear
function of the metric gµν and its space-time derivatives, and Tµν is
the energy-momentum tensor, describing the position and movement
of energy densities. Since the existence of a cosmological constant Λ is
irrelevant for the cosmology of the primordial Universe it is ignored
in this discussion [15].

As all observations on large scales indicate that our Universe is homo-
geneous and isotropic, the metric and the energy-momentum tensor
are both subject to tight constraints. Both quantities can depend only
on time due to homogeneity, while isotropy requires them to be diag-
onal, where the remaining spacial components are equal to each other.
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The most general metric that fulfills this criteria for the case of a flat
Universe is the Friedmann–Lemaître–Robertson–Walker (FLRW) metric The FLRW metric

(
gµν

)
(t) = diag [1, −a (t) , −a (t) , −a (t)] . (2.2)

Since in this metric the infinitesimal volume element is given by
dV = a3(t)d3x, the function a(t) is called the “scale factor” which
translates between physical and coordinate distances. The energy-
momentum tensor is given by

(
Tµν

)
(t) = diag [ρtot(t), −Ptot(t), −Ptot(t), −Ptot(t)] , (2.3)

where ρtot (Ptot) is the energy density (pressure) of a perfect fluid by
which the hot plasma of the early Universe is described [6]. Insert-
ing these quantities into the Einstein field equation (2.1) yields two
independent ordinary differential equations (ODEs) for the scale factor, The Friedmann

equationswhich are are called the first and second Friedmann equations. They
can be written as

H(t) ≡ ȧ(t)
a(t)

=

√
ρtot(t)
3 m2

Pl
, (2.4a)

Ḣ(t) + H2(t) =
ä(t)
a(t)

= −ρtot(t) + 3 Ptot(t)
6 m2

Pl
. (2.4b)

The first equation defines the Hubble rate H(t), which works as a mea-
sure for the velocity of the expansion of the Universe. Today’s Hubble
rate is commonly referred to as the Hubble parameter, which was
measured to have a value of H0 = 68 km s−1 Mpc−1 = 2.1 · 10−42 GeV
[16]. A more familiar form of the second Friedmann equation can
be obtained by differentiating the first Friedmann equation and then
reinserting it into the second one. We obtain the relation

ρ̇tot(t) + 3 H(t) [ρtot(t) + Ptot(t)] = 0 , (2.5)

describing energy and momentum conservation in the expanding
Universe. This interpretation can be made clear by comparing to the
ν = 0 component of the energy-momentum conservation ∇µTµν = 0 An alternative

second Friedman
equation

in GR, which contains the same relation [6]. In the following, equation
(2.5) will be referred to as the second Friedmann equation. In the
next subsection, it will become apparent why this expression is of
particular importance when dealing with different interacting particle
species.

2.2.2 Particle interactions in the Universe

The evolution of the scale factor can be obtained from the Friedmann
equations once one knows how the energy density of the initially
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hot plasma evolves with time. This section is aimed at giving an
overview of how one can calculate this and other thermodynamic
quantities. From the sheer number of individual particles it is already
clear, that one cannot just keep track of them individually, but that one
has to work with particle ensembles as they are defined in statistical
mechanics: For high particle densities, the particle species’ nature isDescribe particle

species statistically fully characterized by its phase-space distribution function fx(t, x, p),
where x denotes the respective species. The total particle number in an
infinitesimal phase-space volume is then encoded within the relation

dNx =
gx

(2 π)3 fx(t, x, p) d3 p d3x , (2.6)

where the number of spin states of x is counted by gx.

2.2.2.1 The relativistic Boltzmann equation in an expanding Universe

The evolution of fx(t, x, p) is governed by the relativistic Boltzmann
equation [6, 24]

(
pµ ∂

∂xµ
− Γµ

αβ(t, x) pα pβ ∂

∂pµ

)
fx(t, x, p)

︸ ︷︷ ︸
≡L[ fx ](t,x,p)

= C [ fx, ...] (t, x, p) .

(2.7)

While the Liouville operator L [ fx] encodes the change of fx due
to GR effects, the collision operator C [ fx, ...] encodes the effects of
particle interactions as they are described in an underlying QFT. Since
in general, multiple species interact with each other, C [ fx, ...] is not
only a functional of fx but further depends also on other distribution
functions as indicated by the ellipsis.

For the case of the homogeneous and isotropic FLRW Universe, thisThe Boltzmann
equation in an

expanding Universe
equation simplifies considerably to [6]

∂t fx(t, p)− H(t) p ∂p fx(t, p) =
C [ fx, ...] (t, p)

Ex(p)
(2.8)

with Ex =
√

p2 + m2
x. Note that the phase-space distribution function

fx only depends on time and the momentum’s modulus p = |p|,
since due to homogeneity and isotropy all positions and directions
in space should show equivalent physics. The Boltzmann equation as
it is written in (2.8) can be used to describe the various processes of
early-Universe cosmology, like the freeze-in or freeze-out of DM, BBN

or the decay of a DS, as in our case.
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2.2.2.2 The collision operator

For using the Boltzmann equation, it is crucial to understand the
collision operator within and how to derive it from a given QFT. One
can show that the collision operator can be written as [24]

C [ fx, ...] (t, px) =
g−1

x
2 ∑

r∈Rx

εr

∫
∏

s∈(Ir∪Fr)\{x}

d3 ps

(2 π)3 2 Es

× (2 π)4 δ(4)

(
∑

k∈Ir

pk − ∑
l∈Fr

pl

)

× |Mr|2 ∏
m∈Fr

(1± fm) ∏
n∈Ir

fn .

(2.9)

Therein, Rx is the set of all possible particle interactions of the species Understanding the
right-hand side of the
Boltzmann equation

x and the set Ir (Fr) contains all species of the reaction r ∈ Rx in
the initial (final) state. To account for the increase or decrease of the
phase-space distribution function when x particles are produced or
destroyed, the factor εr is equal to +1 (−1) if x is a final-state (initial-
state) particle of r. Further, the occurring Dirac delta distribution δ(4)

handles the conservation of four-momenta, such that its product with
the squared matrix elements1 |Mr|2 works as a measure of probability
for the reaction r. Finally, the ± signs in the product of the final-state
distribution functions evaluate to + (−) when fm describes a boson
(fermion), encoding effects of quantum statistics [24].

2.2.2.3 The Boltzmann equation for an (inverse) decay

In principle, once the corresponding matrix elements are known, the
evolution of the particle content of the universe can now be calculated
by a set of coupled Boltzmann equations describing each individual
particle species and their respective interactions. In most cases, this
is however computationally unfeasible. To nonetheless illustrate the
evolution of an interacting particle species, it is worth setting up the
Boltzmann equation for the (inverse) decay of a generic particle species
x ↔ zz̄. The presented calculation follows the one described in [24].

In our case, the set of relevant reactions is Rx = {x → zz̄, zz̄→ x}, Investigating the
simple case of the
reaction x ↔ zz̄

where the sets of initial- and final-state particles are given by Ix→zz̄ =

Fzz̄→x = {x} and Izz̄→x = Fx→zz̄ = {z, z̄}. Assuming time (or equiva-
lently, CP) invariance, the matrix element

∣∣M
∣∣ ≡ g−1

x |M| is the same

1 The matrix element |Mr|2 is summed over the spins of all initial- and final-state
particles. To compensate the sum over the spin of x, an additional factor of g−1

x is
included in equation (2.9). Further, all symmetry factors are assumed to be already
included within the matrix element.
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for both reactions and can be expressed in terms of a total lifetime of
the species x:

1
τx

=
βz

16 π mx

∣∣M
∣∣2 with βz ≡

√
1− 4 m2

z
m2

x
. (2.10)

Upon performing the integration over the momentum space of the z
particle, one ends up with the Boltzmann equation

∂t fx(t, p)− H(t) p ∂p fx(t, p)

= − mx

Ex τx
fx(t, p)

+
mx

Ex τx

1
βz p

∫ p+

p−
fz(t, pz) fz̄(t, pz̄)

pz̄ dpz̄

Ez̄

± mx

Ex τx

fx(t, p)
βz p

∫ p+

p−
[ fz(t, pz) + fz̄(t, pz̄)]

pz̄ dpz̄

Ez̄
.

(2.11)

The first term on the right-hand side of this equation describes the ex-
pected relation Ṅx ∼ −Nx/τx for the decaying particle species includ-
ing an additional boost factor γx = Ex/mx to account for relativistic
decays. In accordance with special relativity, the lifetime τx γx > τx of
the decaying species thus gets effectively increased in the lab frame.
The remaining two terms describe effects from quantum statistics and
inverse decays, explicitly depending on the distribution functions of z
and z̄, which would require additional Boltzmann equations for these

particle species for a general solution. Therein, p± =
√

E2
± −m2

z are
the extremal values of pz̄ that are allowed kinematically by the decay,
where 2 E± = Ex ± px βz.

Ignoring inverse decays for simplicity2 leaves us with a considerably
simpler Boltzmann equation. This equation can be solved analytically
by using the method of characteristics, which transforms the partial
differential equation (PDE) into an ODE. Assuming that H(t) is inde-
pendent of fx(t, p), one can introduce a function s(t, p) which fulfills
the properties dt

ds = 1 and dp
ds = −H(t) p, such that

d fx(t, p)
ds

=
∂ fx

∂t
dt
ds

+
∂ fx

∂p
dp
ds

=
∂ f
∂t
− ∂ f

∂p
H(t) p = − mx

Ex τx
fx . (2.12)

Solving for s(t, p) and inserting it into the resulted ODE leads toThe Boltzmann
equation becomes an
easily solvable ODE d

dt
fx

(
t,

p
a(t)

)
= − mx

Ex τx
fx

(
t,

p
a(t)

)
, (2.13)

2 If one included inverse decays in the following discussion, one would end with
a similar result, where the effective lifetime of the species x had to be modified
accordingly [24].
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which can be easily solved by integrating with an appropriate initial
condition [24]. The physical interpretation of this equation is that
the decay and the redshift of particle momenta can be considered
independently. This equation will be solved once the initial conditions
for the investigated problem at hand become clear in chapter 3.

2.2.2.4 Momenta of the Boltzmann equation

In order to use the results of the solution of the Boltzmann equation
within the context of the Friedmann equation, one has to translate from
the distribution function fx(t, p) to quantities like the energy density
ρx(t) or the pressure Px(t). Beyond that, also the number density
nx(t) and the entropy density sx(t) can be calculated by integrating
the distribution function. In special cases, these quantities can even
be inferred without the need to derive their underlying distribution
functions before, as will be shown in section 2.2.2.5 for the case of
ultra-relativistic and non-relativistic species in thermal equilibrium.

The number density can be obtained from the phase-space distribu- The number density

tion function by an integration
∫
· gx d3 p/ (2 π)3 over the momentum

space,

nx(t) =
gx

2 π2

∫

R
p2 dp fx(t, p) . (2.14)

Thus, integrating the Boltzmann equation (2.8) over momentum space
yields3

ṅx(t) + 3 H(t) nx(t) =
gx

2 π2

∫

R
p2 dp

C [ fx, ...] (t, p)√
p2 + m2

x
. (2.15)

Like the number density, also the energy density and the pressure can Energy density and
pressurebe obtained by integrating the distribution function, this time after

multiplying it with Ex(p) and p2/ [3 Ex(p)], respectively [6]:

ρx(t) =
gx

2 π2

∫

R
p2 dp

√
p2 + m2

x fx(t, p) , (2.16a)

Px(t) =
gx

6 π2

∫

R
p2 dp

p2
√

p2 + m2
x

fx(t, p) . (2.16b)

By integrating the Boltzmann equation over
∫
· Ex gx d3 p/ (2 π)3, one

obtains

ρ̇x(t) + 3 H(t) [ρx(t) + Px(t)] =
gx

2 π2

∫

R
p2 dp C [ fx, ...] (t, p) . (2.17)

3 This and the following integrations can be done by parts, requiring the distribution
function weighted with powers of p to vanish at p → ∞. Since high momenta are
typically exponentially suppressed, this condition is fulfilled.



14 theoretical background

A comparison with the second Friedmann equation (2.5) already gives
an important result for the coming discussion on dark sectors: After
having identified the volume heating rate as

q̇x(t) ≡ ρ̇x(t) + 3 H(t) [ρx(t) + Px(t)] , (2.18)

the second Friedmann equation tells us that the total heat of the
Universe is conserved (q̇tot = 0) and can only be transferred betweenTotal heat is

conserved different particle species and, eventually, interacting sectors of particle
physics [24]. The discussion in chapter 3 will come back to this result.

Ultimately, the entropy density can be calculated as the integral overThe entropy density

the Boltzmann entropy SB(t, p) [25]

sx(t) = −
gx

2 π2

∫

R
p2 dp [ fx ln ( fx)∓ (1± fx) ln (1± fx)]︸ ︷︷ ︸

≡SB(t,p)

, (2.19)

where the upper (lower) sign again describes bosons (fermions). Inte-
grating over

∫
· ln [ fx/ (1 + fx)] gx d3 p/ (2 π)3, one finds

ṡx(t)+3 H(t) sx(t) =

− gx

2 π2

∫

R
p2 dp ln

(
fx(t, p)

1± fx(t, p)

) C [ fx, ...] (t, p)√
p2 + m2

x
. (2.20)

Note that the obtained equations for ṅx, ρ̇x and ṡx do not necessarily
simplify the calculation. Only under certain assumptions, the integral
on their respective right-hand side can be expressed analytically in
terms of the thermodynamical quantities nx, ρx and sx. When this is
the case, the simplification is, however, substantial. Then, after having
summed up the individual energy densities to ρtot(t) ≡ ∑x ρx(t), the
first Friedmann equation (2.4a) can be solved without further ado.

So far, only intrinsic thermodynamic quantities have been discussed.
The connection to extrinsic quantities is simple as the left-hand sides
of the equations (2.15), (2.17) and (2.20) case can also be written as
Ṅx(t), Q̇x(t) and Ṡx(t), where Nx(t) ≡ nx(t) a3(t), Sx(t) ≡ sx(t) a3(t),
and the heating rate is defined as Q̇x(t) ≡ q̇x(t) a3(t).

2.2.2.5 Local thermal equilibrium

Everything presented so far can be used to calculate fx(t, p) in full
generality. The discussion can however be simplified significantly by
considering tightly coupled species. Since particle species interact
strongly after the end of inflation, they equilibrate and form an LTE. If
one says that x is in LTE, one means that there is a unique temperatureThermal

distributions Tx(t) and the corresponding momentum spectrum is given by either a
Bose-Einstein (−) or a Fermi-Dirac (+) distribution

fx(t, p) =
[

exp
(

Ex(p)− µx(t)
Tx(t)

)
∓ 1
]−1

, (2.21)
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with µx(t) denoting the chemical potential of x. Inserting this distri-
bution function into (2.20), it follows that

Ṡx(t) = a3(t)
gx

2 π2

∫

R
p2 dp

C [ fx, ...] (t, p)
Ex(p)

Ex(p)− µx(t)
Tx(t)

(2.15)
=

(2.17)

Q̇x(t)− µx(t) Ṅx(t)
Tx(t)

(2.22)

⇔ Tx(t) Ṡx(t) = Q̇x(t)− µx(t) Ṅx(t) . (2.23)

The second law of thermodynamics therefore holds for each individual Recovering the
second law of
thermodynamics

particle species in LTE. Furthermore, one can conclude that a particle
species’ entropy is conserved, when there is no heat transfer to other
particle species (Q̇x(t) = 0) and the product µx(t) Ṅx(t) vanishes.
The latter will be the case if either the chemical potential of x is zero
(µx(t) = 0) or if its particle number is conserved in a comoving volume
(Ṅx(t) = a3(t) [ṅx(t) + 3 H(t) nx(t)] = 0).

Inserting (2.21) into (2.20) and using (2.15) and (2.17) anew, one finds
that

Tx(t) sx(t) = ρx(t) + Px(t)− µx(t) nx(t) , (2.24)

which connects all the calculated thermodynamical quantities and can
be used to calculate the entropy density of a given species in LTE.

Moreover, it is possible to derive analytic expressions for nx(t), ρx(t) Radiation and dust

and Px(t) in the case of ultra-relativistic and non-relativistic particles
[6]: For a relativistic species, the distribution function can be simplified
using Tx(t)� mx, µx(t). Integrating the resulting distribution function
yields

nx(t) '
ζ(3)
π2 gx T3

x (t)×





1 for bosons

3/4 for fermions
, (2.25a)

ρx(t) '
π2

30
gx T4

x (t)×





1 for bosons

7/8 for fermions
, (2.25b)

Px(t) ' ρx(t)/3 . (2.25c)

Conversely, for non-relativistic particles, Tx(t)� mx and Ex(p)/Tx(t) '
mx/Tx(t) + p2/(2 mx Tx(t)) hold, such that

nx(t) ' gx

(
mx Tx(t)

2 π

)3/2

e(µx(t)−mx)/Tx(t) , (2.26a)

ρx(t) '
(

mx +
3
2

Tx(t)
)

nx(t) , (2.26b)

Px(t) ' Tx nx(t)� ρx(t) . (2.26c)

In the relativistic case, the quantum nature of the particle species
becomes obvious by the distinction of fermions and bosons. Also the
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Stefan-Boltzmann-like ρ ∝ T4 behavior is recovered. The ideal gas law
can be identified in the non-relativistic energy density, where each
particle carries a mean energy of 〈Ex〉 = mx + 3 Tx/2. In either case,
the entropy density sx(Tx) can be calculated using the relation (2.24).

Finally, applying the derived relations Px = ρx/3 and Px � ρx to
equation (2.17) for a vanishing collision term and then integrating
over time, one can retrieve that ρmat(t) ∝ a−3(t) and ρrad(t) ∝ a−4(t),
as initially depicted in Figure 2.3.

2.3 finite-temperature effects in quantum
field theory

The dynamics of a QFT is condensed within its tree-level Lagrangian
density. While perturbation theory shows to be a useful tool (e. g.,
when using Feynman diagrams to calculate cross sections for particle
interactions described in the Lagrangian density), there exist also non-
perturbative solutions of the equations of motion that can be obtained
by means of the principle of stationary action. For the case of staticPhase transitions are

dictated by the
stationary action

fields this reduces to the problem of minimizing the potential energy
density defined by the QFT. If the position of the global potential mini-
mum in field space is dependent on temperature, a phase transition
can occur.

Since the fields we are dealing with are quantized, there will be
additional contributions to the so-called effective potential next to
the tree-level potential term. These temperature-dependent quantum
effects can be calculated using thermal field theory. In this section,
first, the toolbox of thermal field theory will be introduced by recalling
the textbook example of a harmonic oscillator in a thermal bath. The
argument is then transferred and generalized to QFT, where it will be
argued that the effect of thermal field theory is the introduction of
so-called Matsubara sums. Afterwards, we will use the computational
techniques from thermal field theory to describe a general recipe for
the calculation of the one-loop effective potential of a given particle
physics model. The general focus will be more on giving an overview
rather than describing particular loop calculations in detail, which can
also be found in the existing literature on that topic, see e. g. [26, 27].

2.3.1 The quantum harmonic oscillator in a thermal bath

The central object of canonical statistical mechanics is the partition
function, from which one can derive all thermodynamic properties of a
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system in equilibrium. For a discrete, quantum-mechanical, canonical
ensemble with Hamiltonian H the partition function is defined as
the trace of the Boltzmann factor, Z(T) ≡ Tr

[
e−βH]. The parameter The partition

functionβ ≡ T−1 denotes the inverse temperature of the bath with which the
system is in thermal equilibrium. For the case of a single harmonic
oscillator with a frequency ω, the partition function reads [28]

Zho =





∑∞
n=0 exp

[
−β ω

(
n + 1

2

)]
for bosons

∑1
n=0 exp

[
−β ω

(
n + 1

2

)]
for fermions

(2.27)

=





e−β ω/2 (1− e−β ω
)−1 for bosons

eβ ω/2 (1 + e−β ω/2) for fermions .
(2.28)

A system whose temperature and volume are kept constant will
eventually equilibrate in a state that minimizes its free energy F ≡
−T ln Z(T), as one can show from the second law of thermodynamics. The free energy

For the harmonic oscillator this implies [28]

Fho =





ω
2 + T ln

(
1− e−β ω

)
for bosons

−ω
2 − T ln

(
1 + e−β ω

)
for fermions .

(2.29)

We can thus see that the free energy of a quantum harmonic oscilla-
tor has two components: the first one fixes the ground state energy,
being unequal to zero due to Heisenberg’s uncertainty principle and
independent of the temperature of the connected thermal bath. Its
effect is thus completely quantum-mechanical. On the contrary, the
second term depends explicitly on temperature and dominates for
sufficiently high temperatures. While bosons have positive free ener-
gies, the free energy of fermions has a relative negative sign. We will Same contributions

as in thermal field
theory

recover qualitatively the same results in thermal field theory after a
much longer discussion of the effective potential—in case that one has
to again convince oneself that the calculations from QFT do not look
too absurd, it can be helpful to come back to this toy example.

2.3.2 Thermal Field Theory

In a canonical ensemble with a Hamiltonian H and energy eigenstates
|n〉, the expectation value of an operator A is given by the thermally
averaged sum

〈A〉T ≡
1
Z

Tr
[
e−βHA

]
, (2.30)

where the partition function Z acts as a normalization factor. The
connection between statistical mechanics and QFT emerges when cor-
relation functions are expressed as thermally averaged sums. If one
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takes the two-point function of a quantum field φ, one can permuteDerivation of the
KMS relation the terms within the trace argument to arrive at the important Kubo-

Martin-Schwinger (KMS) relation

〈φy(t) φx(0)〉T =
1
Z

Tr
[
e−βH φy(t) φx(0)

]

=
1
Z

Tr
[
φy(t) e−βH ei(−i βH) φx(0) e−i(−i βH)

]

=
1
Z

Tr
[
φy(t) e−βH φx(−iβ)

]

=
1
Z

Tr
[
e−βH φx(−i β) φy(t)

]

= 〈φx(−i β) φy(t)〉T¸

= ±〈φy(t) φx(−i β)〉T , (2.31)

where in the third line the time evolution φx(t) = eiH t φx(0) e−iH t

was used and the final minus sign is for the fermionic case, where the
fields φx and φy anti-commute [29]. The discovered equation requires
a bosonic (fermionic) field φ to be symmetric (anti-symmetric) and
cyclic in time with the periodicity −i β: φx(0) = ±φx(−i β).

Now upon performing a Wick rotation t → τ = −it (as it is usually
done to perform loop integrals in Euclidean space), one can observeImaginary time =

inverse temperature that in thermal field theory imaginary time τ can be identified with
inverse temperature β. This is the (profoundly mysterious) central
relationship between QFT and thermodynamics. The main result of this
condition is that the time component in integrals of n-point functions
over Euclidean four-momentum space becomes a discrete sum

∫ d4kE

(2 π)4 f (kE)→ T ∑
n

∫ d3k

(2 π)3 f (ωn, k) (2.32)

over the so-called Matsubara frequencies

ωn =





2 n π T for bosons

(2 n + 1)π T for fermions .
(2.33)

Thus, to study a field theory at finite temperature, all we have to
do is rotate to Euclidean space and impose the correct boundary
condition. Computationally, this leads to the following simple pre-
scription for loop calculations: Perform a Wick rotation and replaceThe essence of

thermal field theory the kE
0 -integration by an infinite sum over the Matsubara frequencies

ωn. However, this sum often cannot be evaluated trivially. Using the
residue theorem and a contour that encircles all the Matsubara poles
can then be a very handy trick [27].
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2.3.3 The effective potential

To illustrate the use of the replacement rule (2.32) in the calculation of
an effective potential, consider the Lagrangian density of a complex
scalar Φ = (φ + iϕ)/

√
2 and a Dirac fermion ψ that are both charged

under a U(1) gauge symmetry with the covariant derivative Dµ = ∂µ + An exemplary U(1)
gauge groupigAµ and the corresponding field strength tensor Bµν = ∂µ Aν − ∂ν Aµ:

L =
∣∣Dµ Φ

∣∣2 − 1
4

Bµν Bµν + µ2 |Φ|2 − λ |Φ|4

+ i ψ̄ /D ψ− y Φ ψ̄ ψ + h.c. (2.34)

⊃ 1
2
(
∂µ φ

)2
+

µ2

2
φ2 − λ

4
φ4

︸ ︷︷ ︸
=−Vtree(φ)

+
g2

2
φ2 Aµ Aµ

+ i ψ̄ /∂ ψ + g ψ̄ γµ ψ Aµ −
y√
2

φ ψ̄ ψ . (2.35)

Since the VEV of Φ can always be projected onto the field’s real part, the
imaginary part of the field can be ignored in the following calculations.
The mass spectrum is given by m2

φ = 3 λ φ2 − µ2, m2
ϕ = λ φ2 − µ2,

m2
A = g2 φ2 and m2

ψ = y2 φ2/2. Requiring the minimum of Vtree(φ)

to lie at the tree-level VEV v = φ gives the additional condition that
µ2 = λ v2. We will find that at high temperature the field φ will have
a vanishing VEV, such that the masses for the gauge boson and the
fermion are zero. As the Universe cools, φ will acquire its tree-level
VEV v such that m2

φ = 2 λ v2, m2
ϕ = 0, m2

A = g2 v2, and m2
ψ = y2 v2/2.

This generation of gauge boson and fermion masses is known as the The Higgs
mechanism“Higgs mechanism”, which is why the field Φ can also be referred to

as a Higgs field, even though it is not the Higgs field from the SM. We
will thus also refer to the real part φ of Φ as a “dark Higgs boson” in
analogy to the Higgs boson from the SM, itself also representing the
real part of the corresponding complex scalar field.

A central result of the path integral formulation of a QFT is that
the effective potential of the static scalar field generated by its self-
interactions can be written as4

V`−loop
eff,Φ (φ) = −

∞

∑
n=0

φn

n!
Γ(n)
` (p = 0) (2.36)

with the n-point, `-loop effective vertex Γ(n)
` where all external mo-

menta are set to zero [26, 27, 30]. This series represents a sum over all
n-point interactions, where the individual interactions are at `-loop
order. If, for example, the effective vertices correspond to the tree-level

4 Only the potential of the scalar field is of importance here, since non-vanishing VEVs of
fermionic or gauge boson fields would break the vacuum’s Lorentz invariance. There
will, however, of course be contributions to the effective potential from interactions
with all the coupled fields, hence also from the gauge boson Aµ and the fermion ψ.
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(` = 0) interactions, the effective potential V0−loop
eff is just the tree-level

potential Vtree. If one instead considers interactions up to one-loopThe effective
potential for ` = 0

and 1
order, one obtains a sum over all diagrams with one loop and (in the
case of the presented Lagrangian density) 2 n external legs. Hence,
the 1-loop potential for the toy-Lagrangian given in equation (2.35) is
given by

V1−loop
eff,Φ (φ) =


φ2 + φ4 + φ6 + . . .




p=0

.

(2.37)

Here and in the following, external, dashed lines in the Feynman
graph indicate the real part φ of the propagating dark Higgs field,
whereas internal, solid lines depict the complex field Φ. Since the n-th
diagram in this resulting series has 2 n external legs, n propagators
and symmetry factors of 1/(2 n) (for cyclic and anti-cyclic permutation
of the vertices) and 1/2n (for interchanging the external lines at each
vertex), the sum can be expressed as

V1−loop
eff,Φ (φ) = 2 i

∞

∑
n=1

∫ d4k

(2 π)4
1

2 n

[
6 λ φ2/2

k2 + µ2 + i ε

]n

. (2.38)

The prefactor 2 accounts for the two degrees of freedom of the loop
complex scalar. Each vertex contributes a factor −6 i λ and each propa-
gator comes with a factor i/

(
k2 + µ2 + i ε

)
[26]. The sum over all dia-

grams can be evaluated by comparing to the Taylor series of the func-
tion ln(1 + x). Upon performing a Wick rotation, such that k2 = −k2

E,
the effective potential can be written as

V1−loop
eff,Φ (φ) =

∫ d4kE

(2 π)4 ln
[

1 +
3 λ φ2

k2
E − µ2 − i ε

]

=
∫ d4kE

(2 π)4 ln
[
k2

E + m2
φ(φ)

]
. (2.39)

One can show that the resulting expressions for contributions fromThe effective
one-loop potential for

fermions and gauge
bosons

gauge bosons and fermion loops all have a similar form, with the
degrees of freedom changed accordingly and a respective negative
sign coming from fermionic loops [27]. The combined expression thus
reads

V1−loop
eff (φ) = ∑

x

ηx nx

2

∫ d4kE

(2 π)4 ln
[
k2

E + m2
x(φ)

]
, (2.40)

where ηx = +1 (−1) for bosons (fermions). The effect of embedding
the quantum fields in a thermal environment with temperature T nowAdding a thermal

bath sets periodic boundaries to the integral over imaginary time. Applying
the replacement rule (2.32) yields

V1−loop
eff (φ, T) = ∑

x

ηx nx T
2 ∑

n

∫ d3k

(2 π)3 ln
[
ω2

n + k2 + m2
x
]
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= ∑
x

ηx nx T
2 ∑

n

∫ d3k

(2 π)3

∫
dm2

x
1

ω2
n + ω2

x

= ∑
x

ηx nx

2

∫ d3k

(2 π)3

∫
dm2

x

[
1

2 ωx
+

1
ωx

ηx

eβ ωx − ηx

]

= ∑
x

ηx nx

∫ d3k

(2 π)3

[ωx

2
+ T ln

(
1− ηxe−β ωx

)]

= V1−loop
eff (φ, T = 0) + V1−loop

eff (φ, T > 0) . (2.41)

To simplify the Matsubara sum, the derivative of the expression in
the integral with respect to m2

x was taken and re-integrated after
the sum has been calculated. Further, the variable ω2

x ≡ k2 + m2
x

has been introduced to shorten the notation. One ends up with an
integral over the 3-momentum space of a temperature-independent
and a temperature-dependent term that remind of the free energy of a
simple harmonic oscillator in a thermal bath. Therefore, the presented
temperature-dependent, effective 1-loop potential V1−loop

eff (φ, T) can
be interpreted as being analogous to the vacuum energy density of a
quantum harmonic oscillator in a thermal bath, while the tree-level Recovering the

harmonic oscillatorpotential Vtree(φ) is just the classical energy density contained in a
background field φ [26].

In fact, the dynamic nature of the field can be made mathematically
clear by splitting it into a classically moving field φc and a dynamical
part φd: While φd fluctuates around the potential minimum, φc is the
background field that is just the VEV of the potential. Hence, the field-
dependent masses m2

x(φ) should rather be called “VEV-dependent
masses” and depend on φc and not on φc + φd. However, one conven-
tionally drops the subscript “c”. In any case, this mass works as a
measure of the parabolicity of the tree-level potential at its minimum
and thus dictates the frequency of oscillation of the quantum field φd
as it is described by the Klein-Gordon equation.

2.3.4 Treatment of the effective potential’s divergences

Before replacing the infinite sum over the number of external legs
in equation (2.38), the integral diverges due to the diagrams with
two and four external legs. Thus, the potential given in (2.41) is still
ultraviolet (UV) divergent. Another breakdown of perturbativity can
be predicted by the mere existence of two energy scales µ and T
within the second, temperature-dependent term [31]. Whereas the
first divergences can be treated with the simple regularization of UV and IR

divergences in the
effective potential

the integral and the introduction of counterterms, the latter case
is more involved. Several procedures to deal with the resulting UV

and infrared (IR) divergences have been described in the pertinent
literature [32]. Moreover, one finds that higher loop-order effects
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dominate at temperatures around phase transitions. What can be
done to take account of these peculiarities, is the resummation of so-
called daisy diagrams. More accurate results could be obtained using
computationally more advanced lattice QFT procedures [33]. Since
our focus lies on the investigation of new effects concerning phase
transitions in hot dark sectors rather than on precision calculations,
we will stick with the resummation of daisy diagrams.

2.3.4.1 The Coleman-Weinberg contribution

The effective potential at T = 0 can be shown to be equivalent to

V1−loop
eff (φ, T = 0) = ∑

x
ηx nx

∫ d3k

(2 π)3
ωx

2

= ∑
x

ηx nx

2

∫ d4kE

(2 π)4 ln
[
k2

E + m2
x(φ)

]
(2.42)

by using the identity ω/2 =
∫ +i∞
−i∞ dk ln

(
k2 + ω2) /(2 π) [26]. The

resultant UV divergent integral can be regularized dimensionally byRegularization of the
Coleman-Weinberg

potential
formally shifting the dimension of the integral to 4 − ε. In doing
so, the singularities will be isolated into terms ∝ 1/ε, which will
be canceled upon the introduction of finite counterterms Vct. The
regularized one-loop potential for vanishing temperature eventually
reads

VCW(φ) = ∑
x

ηx nx
m4

x(φ)

64 π2

[
ln

m2
x(φ)

Λ2 − Cx

]
(2.43)

with Cx being equal to 3/2 (5/6) for scalars and fermions (gauge
bosons) [27]. Note that the renormalization scale Λ can be absorbed
into a redefinition of the quartic coupling λ of a given QFT. In that
sense the choice of Λ is arbitrary. Conventionally, the Higgs field’s
VEV v is chosen as a reference scale. The counterterms can be imposed
by the renormalization conditions 0 = ∂φ (VCW + Vct)|φ=v and 0 =

∂2
φ (VCW + Vct)|φ=v, effectively ensuring that the VEV and mφ remain

unchanged with respect to the tree-level potential.

2.3.4.2 Hard thermal loops and daisy resummation

To understand the divergences of the T > 0 contributions, consider the
1-loop corrections to the scalar and gauge boson propagator defined
by the Lagrangian density in equation (2.35). These contributions are
referred to as “hard thermal loops” and are listed in Figure 2.5. Just
as before, their individual contributions can be calculated by applying
the replacement rule from (2.32). They eventually each include a UV

divergent term and a temperature-dependent term, which acts as an
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≈ 2 · ∂2m2
φ(φ)

∂φ2
T2

24

(a)

≈ 4 · ∂2m2
ψ(φ)

∂φ2
T2

48

(b)

≈ 3 · ∂2m2
A(φ)

∂φ2
T2

24

(c)

+ ≈





2 · g2

6 T2 (longitudinal)

0 (transversal)

(d)

≈





4 · g2

12 T2 (longitudinal)

0 (transversal)

(e)

Figure 2.5: The hard thermal loops for the scalar (a, b, and c) and the U(1)
gauge boson (d and e) defined in equation (2.35). Note that only
longitudinally polarized gauge bosons receive Debye masses and
that the values are approximated in the regime T � mx, where
mx is the mass of the particle constituting the loop. The prefactors
account for the degrees of freedoms (DOFs) of the loop particle.

additional mass term in the propagator. Since the process in which
these masses are generated is analogous to Debye screening, the polar-
ization of plasmas and electrolytes leading to the screening of electrical
charges, these masses are called “Debye masses”. An explicit calcula- Debye masses and

hard thermal loopstion of them yields the values written next to the individual Feynman
diagrams in Figure 2.5 [26]. As fermions will not contribute with their
Debye masses to the effective potential, the respective diagrams are
not of importance here.

To now see where the aforementioned IR divergences in the thermal
corrections come from, consider the so-called “daisy diagram”

∼ (λT)
(
λT2)N−1

µ2N−3 = λN T2N−1

µ2N−3 = αN−3/2 λ3/2 T2 ,

(2.44)

where in the last step the effective coupling α ≡ λ T2/µ2 has been
introduced. The temperature dependence of the daisy diagram can be
determined by dimensional analysis, i. e. by counting its superficial
degrees of divergence, which are given by

D = 4 #loops− 2 #boson prop.− #fermion prop. (2.45)
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due to the respective powers of the loop momentum occurring when
adding a loop, a boson propagator or a fermionic propagator to
a diagram. One can further see that a diagram scales as Tmax(1, D),
since every loop diagram has to be at least linear in T because of the
prefactor in front of the Matsubara sum in (2.32) [31]. By this argument,
it can also be understood why the hard thermal loops in Figure 2.5 are
all proportional to T2. The shown daisy diagram with N total loops
hence scales in dependence of T as it is given in (2.44), where the
factor µ2N−3 fixes dimensionality. Close to a phase transition, when
T ∼ µ/

√
λ such that the mass contributions −µ2 and λ T2 cancel,

α ∼ 1 and the corrections by daisy diagrams scale as Πdaisy ∼ λ3/2 T2.The breakdown of
perturbativity in

daisy graphs
This is in sharp contrast to the expected result from the perturbation
series of a QFT at T = 0, since these corrections do not recede with
increasing loop order.

An explicit calculation of the shown daisy diagram for T � mφ yields

Πdaisy ∼ T ∑
n

∫ ∞

0

dk
2 π2

k2

(ω2
n + k2)N−1

︸ ︷︷ ︸
main loop

×
[

T ∑
n

∫ ∞

0

dk
2 π2

k2

ω2
n + k2

]N−1

︸ ︷︷ ︸
petals

.

(2.46)

One can see that the main loop is IR divergent as soon as N > 2 when
ωn = 0, which can only occur in bosonic daisy diagrams. This is the
origin of the breakdown of perturbativity in the daisy diagram shown
in (2.44) and the reason why fermion Debye masses had not have to
be calculated before [26].

To now account for the effect of the daisy diagrams, the propagators
for bosons with tree-level mass m(φ) have to be resummed by addingDaisy resummation

techniques up propagators with an increasing number of hard thermal loops with
Debye mass Π(T):

1
p2 −m2 +

Π(T)

(p2 −m2)2 +
Π2(T)

(p2 −m2)3 + · · · = 1
p2 −m2 −Π(T)

,

(2.47a)

+ + + · · · = ,

(2.47b)

which can be shown using a geometric sum. The infinite sum hence
results in the replacement

m2(φ)→ m2(φ) + Π(T) (2.48)

in the effective potential for T > 0 in (2.41) which dresses each of
the boson loop propagators, such that they now effectively include



2.3 finite-temperature effects in quantum field theory 25

daisy contributions. This is referred to as the “Parwani method” [34,
35] or as “truncated full dressing”, as opposed to “full dressing”
where the Debye masses are not calculated in the high-temperature
approximation, but in full generality [31]. However, in either case
temperature-dependent counterterms would now be required, which
is against physical intuition as it connects the UV with the IR regime
[32]. What is often done to spare the calculation of these additional
counterterms is to restrict the resummation only to the dominant
bosonic zero-mode of the Matsubara sum like

V1−loop
eff,Φ (φ, T > 0)→ T

2 ∑
n 6=0

∫ d3k

(2 π)3 ln
[
ω2

n + k2 + m2(φ)
]

+
T
2

∫ d3k

(2 π)3 ln
[
k2 + m2(φ) + Π(T)

]

=
T
2 ∑

n

∫ d3k

(2 π)3 ln
[
ω2

n + k2 + m2(φ)
]

+
T
2

∫ d3k

(2 π)3 ln
[

1 +
Π(T)

k2 + m2(φ)

]

= V1−loop
eff,Φ (φ, T > 0) + Vdaisy,Φ(φ, T) , (2.49)

where a new term has been isolated that can be rewritten as [36]

Vdaisy,Φ = − T
12 π

[(
m2(φ) + Π(T)

)3/2 −
(
m2(φ)

)3/2
]

. (2.50)

This procedure is known as the “Arnold-Espinoza” method for resum-
ming daisy diagrams and will also be used in this thesis [35, 37]. It
has been checked that both procedures yield numerically similar, but
not equivalent results5.

2.3.4.3 The cancellation of the potential barrier

The effective potential now includes all relevant effects to study phase
transitions. A great simplification, however, can still be made by rewrit- Introducing thermal

functionsing the original temperature-dependent part (without resummed daisy
diagrams) as

VT(φ, T) ≡ V1−loop
eff (φ, T > 0)

= T ∑
x

ηx nx

∫ d3k

(2π)3 ln
(

1− ηx e−β ωx
)

5 It should further be noted that both the Parwani and the Arnold-Espinoza method
are rather crude approximations and cannot be easily generalized to non-Abelian
gauge theories. A precise calculation of the effective potential would thus require
the use of more modern techniques which include for example a resummation of
Goldstone modes, a proper treatment of gauges and higher-loop (called “sunset”,
“lollipop” and “super-daisy”) diagrams. These diagrams do not have a decreasing
importance with an increasing number of loops either and should therefore also be
resummed [31].



26 theoretical background

−80 −60 −40 −20 0 20 40

z2 = m2/T2

−30

−20

−10

0

10

20

30

40

Re Jbos(z2)

Re Jferm(z2)

Figure 2.6: The real part of the thermal functions Jbos(z2) and Jferm(z2).

=
T4

2 π2 ∑
x

ηx nx Jηx

(
m2

x(φ)

T2

)
(2.51)

with the thermal functions

Jηx

(
z2) ≡

∫ ∞

0
dy y2 ln

[
1− ηx exp

(
−
√

y2 + z2

)]
. (2.52)

A plot of the thermal functions for positive and negative values of
z2 can be found in Figure 2.6. For decreasing temperature, i. e. for
z2 → ∞, the impact of the thermal functions vanishes, while for high
temperatures, i. e. for z2 → 0, their effect gets non-negligible. The
behavior for negative z2 is relevant since the complex scalar field
will acquire an imaginary mass for field values where the system is
unstable, i. e. where the effective potential has a negative curvature.The potential of

unstable systems This instability also becomes manifest in the thermal function devel-
oping an imaginary component, which is also the case for the daisy
contributions in equation (2.50). The hypothetical particle that fulfills
this unstable vacuum configuration is referred to as a “tachyon” as
it would travel faster than light. An in-depth study of the occurrence
of an imaginary component in the effective potential can be found in
[32].

In the high-temperature regime T � m(φ), the thermal functions and
the daisy potential term can be approximated as [27]

Jbos(z2) ≈ −π4

45
+

π2

12
z2 − π

6
z3 − z4

32
ln
(
z2)+ const , (2.53a)

Jferm(z2) ≈ 7 π4

360
− π2

24
z2 − z4

32
ln(z2) + const , (2.53b)

Vdaisy,Φ ≈ −
T4

12π

[(
Π
T2

)3/2

+
3
2

√
Π
T

m2(φ)

T2 −
(

m2(φ)

T2

)3/2
]

⊃ T4

12 π

(
m2(φ)

T2

)3/2

. (2.53c)
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The most important result of this comparison is that only bosonic
degrees of freedom that are coupled to φ contribute a term that scales
as z3. This term can thermally induce a barrier between competing po-
tential minima, driving a possible transition into the first-order regime
(as will be illustrated in the following section 2.4). The expansion of
the daisy potential, however, reveals another term that scales as z3

and shows to have the same prefactor as the contribution from Jbos
multiplicated with T4/(2 π2), but carries a relative minus sign. The
daisy term thus cancels the cubic terms and the thermally induced Avoiding the

cancellation of a
potential barrier

barrier! What eventually saves the first-order phase transition is that
only longitudinally polarized gauge bosons receive Debye masses,
such that the induced barriers by transverse modes survive. Therefore,
in general, scalar fields with gauge charges are required to achieve
first-order transitions when the barrier should be induced thermally.
Otherwise, without gauge charges, the scalar would not couple with
the gauge field, which therefore could not contribute the thermally
induced barrier to the effective potential. One should note, however,
that this is only a necessary condition since dominant tree-level effects
(in the U(1) model controlled by λ) can always dominate, making the
barrier small in comparison [26].

2.3.4.4 Summary

Summing over all the different contributions that have been considered,
the general, 1-loop effective potential of an abelian QFT with daisies An overview over all

contributionsresummed using the Arnold-Espinoza procedure can be written as
[26]

V1−loop
eff (φ, T) = Vtree + VCW + Vct + VT + Vdaisy (2.54)

with the individual contributions

VCW(φ) = ∑
x

ηx nx
m4

x(φ)

64 π2

[
ln

m2
x(φ)

Λ2 − Ca

]
, (2.55a)

VT(φ, T) =
T4

2 π2 ∑
x

ηx nx Jηx

(
m2

x(φ)

T2

)
, (2.55b)

Vdaisy(φ, T) = − T
12 π ∑

b
nL

b

[(
m2(φ) + Π(T)

)3/2
b −

(
m2(φ)

)3/2
b

]
,

(2.55c)

where nx are the degrees of freedom of the fields coupled to φ, nL
b are

the longitudinal boson components thereof, ηx is +1 (−1) for bosons
(fermions), Λ is the renormalization scale, which will be set to the tree-
level VEV v of φ, Cx = 3/2 are the renormalization constants for scalars
and fermions while Cx = 5/6 holds for gauge bosons, and Jηx are the
thermal functions as defined in equation (2.52). Further, Goldstone
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modes have to be counted in addition6 to the longitudinal gauge
boson DOFs and generally, the expression

(
m2(φ) + Π(T)

)3/2
b has to

be understood as the b-th eigenvalue of the temperature-dependent
mass matrix.

For a Lagrangian of a complex scalar field as in (2.35), the countertermCounterterms

potential is given analogously to the tree-level potential by

Vct(φ) = −
δµ2

2
φ2 +

δλ

4
φ4 , (2.56)

where the counter-mass δµ2 and the counter-coupling δλ can be calcu-
lated using

δµ2 =

[
3

2 φ

dVCW(φ)

dφ
− 1

2
d2VCW(φ)

dφ2

]∣∣∣∣
φ=Λ

, (2.57a)

δλ =

[
1

2 φ3
dVCW(φ)

dφ
− 1

2 φ2
d2VCW(φ)

dφ2

]∣∣∣∣
φ=Λ

. (2.57b)

2.4 first-order phase transitions in the
early universe

In this section we want to apply the introduced methods of thermal
field theory to study phase transitions in the early Universe and show
how bubbles of a new phase can emerge and expand in the hot pri-
mordial plasma. The Lagrange density presented in (2.35) without the
fermion ψ is almost that of the DS model that will be introduced in
chapter 4. Without the fermionic interactions, the Debye masses are
given by ΠΦ(T) =

(
λ
3 + g2

4

)
T2 and ΠL

A = g2

3 T2 (see Figure 2.5). The
resulting effective potential is depicted in Figure 2.7 for a range of
temperatures. While for high temperatures, the minimum of the po-
tential and hence also the VEV is fixed to φ = 0, at lower temperatures
the VEV shifts to non-vanishing values and reaches the tree-level VEV

φ = v at T = 0.

The breaking of symmetry can be understood qualitatively by com-Restoring symmetry
at high temperatures paring the tree-level potential terms which are ∝ φ2 and ∝ φ4 to the

leading terms ∝ z2 in the high-temperature approximation of Jbos(z2)

in (2.52). For high temperatures, the leading term in VT(φ) thus scales
as ∝ m2(φ) T2 ∝ φ2 T2, which will eventually dominate over the tree-
level potential for sufficiently high temperatures, yielding an approx-
imately parabolic minimum at φ = 0. When the temperature falls
due to the expansion of the Universe, the thermal effects become less

6 Even though this sounds as if degrees of freedom would be double-counted, this is
not the case as it was argued in [32].
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Figure 2.7: A comparison of the effective potential (2.54) for a complex
scalar charged under the U(1) gauge group defined in (2.35)
for a series of decreasing temperatures (red to blue curves) and
different gauge couplings. The quartic coupling is set to λ =
1.5 · 10−3 and the contributions from the fermion are neglected.
For a vanishing gauge coupling g (left), the potential allows
only for crossovers. For g = 0.5 (right), a potential barrier forms,
thus permitting FOPTs. The blue curves correspond to the zero-
temperature effective potentials, while for the red curves T = 2 v
(left) and T = 0.3 v (right) have been used.

important and, eventually, the tree-level potential dominates, breaking
the underlying gauge symmetry spontaneously7.

The transition from one minimum to another can occur in two different
fashions: continuously or discontinuously, as depicted in Figure 2.7 First-order phase

transitionsfor g = 0 and g = 0.5, respectively. Note that the formation of a
thermally induced barrier can only happen if the gauge coupling
does not vanish as has been argued in section 2.3: For g = 0.5, VT

includes terms ∝ z3 for all bosons coupled to φ, i. e. φ itself and the
gauge boson. Out of these, only the contribution from the transversal
gauge boson mode survives after having added Vdaisy to the effective
potential due to the aforementioned cancellation. In the g = 0 case, the
only contribution to a potential barrier comes from the complex scalar,
which gets canceled exactly when including daisy diagrams. Thus,
without a coupled gauge boson to the Higgs field, no thermal barrier
can form and the field just rolls down to its new VEV. In the opposite
case, the gauge coupling induces a thermal barrier through which
the field has to tunnel to its new VEV. The objective of this section is
to explain how to calculate the temperature at which this so-called
first-order phase transition (FOPT) happens.

7 Turning this argument around, the restoration of symmetry at high temperatures,
being a robust result of thermal field theory, can be seen as the fundamental reason
for why people search for more symmetric theories with large gauge groups in which
one can embed the SM.
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The temperature at which the minimum at φ = 0 degenerates due
to the existence of a second minimum at φ 6= 0 of the same depth is
referred to as the “critical temperature” Tc of an FOPT (see also theThe critical

temperature Tc lower purple curve in 2.7 for g = 0.5) [28]. Below this temperature, the
Universe is trapped in the formerly global minimum, which is now a
local one. The new global minimum is called the “true vacuum” or
the “broken phase”. As long as there has not been a transition to the
new vacuum state, the old minimum is referred to as being “super-
cooled”. This term is used since a state with a lower free energy would
exist, whereas the field is trapped in the old, energetically disfavored
vacuum state8. Generally, as in the study of classical FOPTs, a system
that is super-cooled more strongly will lead to a more violent phase
transition [28]. This is the reason why high potential barriers will be
favored for the production of GWs, as will be described in detail in
section 2.5.

The temperature at which the scalar field eventually tunnels to the true
vacuum state and therewith ends the super-cooling is referred to asThe nucleation

temperature Tn the “nucleation temperature” Tn ∈ [0, Tc], which marks the onset of an
FOPT. Already above this temperature, bubbles of the new phase form,
but collapse immediately. Only below this temperature, the nucleating
bubbles are large enough such that they can expand and permeate the
Universe with the new phase. The existence of such a threshold radius
can be understood in analogy to conventional thermodynamics: The
potential energy of a bubble with radius r in a super-cooled liquid is
proportional to −r3, while its surface tension goes with +r2. Hence,
the bubble growth can only occur once the potential energy difference
between the old and the new phase can account for sufficiently large
bubbles [39]. An FOPT in cosmology now describes the formation of
bubbles with non-zero VEVs of a scalar field in the hot plasma of the
primordial Universe9.

The formation of bubbles can be understood quantitatively by consid-
ering the Euclidean action [42]

S [φ] =
∫

d4xE

[
1
2

(
∂φ

∂τ

)2

+
(∇φ)2

2
+ Veff(φ)

]
(2.58)

of the Higgs field φ. Using the principle of extremal action, the Klein-
Gordon equation in presence of a classical potential

∂2φ

∂τ2 + ∆φ =
dVeff

dφ
≡ V ′eff(φ) (2.59)

8 Under the right circumstances, a long enough period of super-cooling can lead to
an intermediate phase of vacuum domination and inflation, possibly yielding other
interesting effects for BSM physics [38].

9 Note that there exist also more complex phase transitions with intermediate phases
and more scalar fields [40, 41]. We will focus on the case with only one scalar with an
initially vanishing VEV and one phase transition.
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Figure 2.8: The nucleation and expansion of bubbles. Left: Sketch of the
simultaneous nucleation of bubbles in which φ 6= 0 at different
positions in the Universe. Right: Only bubbles larger than a
critical size can expand. The Bubble wall accelerates towards the
speed of light.

with the boundary conditions φ(ρ → ∞) → 0 and φ′(ρ = 0) = 0 is
obtained, where ρ ≡

√
τ2 + x2. Typically, the solutions of this PDE are

O(4)-symmetric. Therefore, the equation of motion can be simplified
to

d2φ

dρ2 +
3
ρ

dφ

dρ
= V ′eff(φ) . (2.60)

This is the so-called “bounce equation”, which can be solved numer- The bounce equation

ically using a shooting algorithm, resulting in the profile φ(ρ) of a
bubble wall. For O(4)-symmetric “bounce solutions” in Euclidean
space, the bubbles form spheres with a radius ρ = R with a corre-
sponding radius r = |x| =

√
R2 + c2 t2 in the three-dimensional space.

This radius can be interpreted as the radial distance from the bubble
center at which the field value drops to a specific value, e. g. half the
VEV. The time dependence of the profile describes a bubble with an
initial radius R that expands subsequently with a bubble wall veloc-
ity that reaches the speed of light. A schematic plot of how bubbles
nucleate and expand can be found in Figure 2.8.

As we are dealing with a field φ in a thermal bath, the effective
potential Veff(φ, T) is also a function of the bath’s temperature and the
KMS relation holds, which states that φ is periodic in the imaginary
time τ with the frequency T−1. Consequentially, the integral over
imaginary time reduces to T−1 [39, 43] such that thermal tunneling Thermal tunneling

can be described by the Euclidean action

S [φ, T] =
S3 [φ, T]

T
=

1
T

∫
d3x

[
(∇φ)2

2
+ Veff(φ, T)

]
, (2.61)
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T
0

v

T = Tn

φ(T)

r
0

φmax
r =
√

R2 + t2

φ(r)

Figure 2.9: Left: Temperature dependence of the two minima of Veff(φ, T).
For sufficiently high temperatures, there is only the symmetric
phase φ = 0 (red); as the Universe cools down, a second minimum
(blue) appears. When T = Tn, bubbles nucleate in which φ 6= 0.
Right: Profile of a bubble as a function of the distance r to the
bubble center. The field value decreases from φ = φmax > 0
within the bubble to φ = 0 outside of the bubble. For T → 0, the
maximal field value inside the bubble reaches the tree-level VEV

φmax → v, as can also be seen in the φ(T) plot on the left.

which, upon imposing stationarity and O(3)-symmetric solutions,
yields the bounce equation

d2φ

dr2 +
2
r

dφ

dr
= V ′eff(φ, T) (2.62)

with the boundary conditions φ(r → ∞) → 0 and φ′(r = 0) = 0. A
plot of the competing VEVs in dependence of the bath’s temperature
and a generic bubble profile φ(r) as a solution for the temperature-
dependent bounce equation can be found in Figure 2.9.

To calculate the nucleation temperature numerically, one comparesCalculation of the
nucleation

temperature Tn
the bubble nucleation rate Γ(T) = A(T) exp (−S3(T)/T), where the
solution φ(r) of the bounce equation at a given temperature T was
inserted into S3 [φ, T] and A(T) ∼ T4 for dimensional reasons, to
the Hubble volume H−3(T). The quantity S3(T)/T is conventionally
referred to as “the bounce action”. The condition, that the integrated
number of bubbles since the end of inflation per Hubble volume
is O(1), yields comparable results to the the conventionally used,
computationally simpler nucleation condition Γ(Tn) H−4(Tn) = 1 [26].
The latter evaluates to

S3(T)
T

∣∣∣∣
T=Tn

∼ 146− 2 ln

(
gtot

eff,ρ(Tn)

100

)
− 4 ln

(
Tn

100 GeV

)
,

(2.63)

where gtot
eff,ρ(T) is the number of effective relativistic DOFs in the Uni-

verse at a temperature T, on which the Hubble parameter H2(T) =
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T

S 3
(T

)/
T

Γ(T)/H4(T) ∼ 1

Tn Tc

Figure 2.10: Plot of the Euclidean bounce action S3(T)/T for a range of
temperatures. At Tc, the bounce action diverges, rendering the
transition rate Γ(T) ∝ exp [−S3(T)/T] infinitely small. This
is due to the vanishing of the difference in free energy (or,
equivalently potential energy density) between the old and
the new vacuum state, which makes the transition from one
minimum to the other energetically disfavored [44]. For T = Tn,
the bubble nucleation becomes so frequent that one bubble per
Hubble volume can form.

π2

30 gtot
eff,ρ(T) T4 depends [12]. A thorough definition of gtot

eff,ρ(T) will
be given in chapter 3. To calculate the nucleation temperature of a
given FOPT numerically, one thus has to find the temperature where
the difference between the left- and right-hand side of (2.63) is mini-
mized, calculating at each iteration the numerically expensive bounce
action S3(T)/T. A plot of the bounce action for the effective potential
discussed in the last section 2.3 can be found in Figure 2.10.

The discussion of FOPTs is now finished: We found that the stationary
action principle dictates phase transitions in which bubbles emerge
into the hot primordial plasma due to the existence of competing
minima in the effective 1-loop potential of a Higgs field coupled to a
gauge field. Until now, however, the emission of gravitational waves
had not been important, since the bubbles are spherically symmetric
and expand likewise. This changes when bubbles of the new phase
collide, as will be shown. The following section is aimed at explaining
how GWs can be emitted in this process and how we can describe their
resulting spectra.

2.5 gravitational waves from phase transi-
tions

In this section, we will first discuss how Einstein’s GR predicts gravita-
tional radiation and what its properties and some of its peculiarities
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are. Using either some renormalization technique or Noether’s the-
orem, it will then be possible to define consistently the energy and
momentum of gravitational waves in chapter 2.5.2. With the knowl-
edge of how to compute the energy density of a monochromatic wave,
we will turn to the superposition of waves to a stochastic background
in 2.5.3. In 2.5.4, the mechanism of production of such a background
from the leftovers of a primordial FOPT will be examined. Ultimately,
in 2.5.5, the detection of SGWBs will be described and a measure for
a signal-to-noise ratio (SNR) will be provided. This measure will be
used to quantify the observability of the investigated model in chapter
4. While the first three subsections follow the introduction to GWs

presented in [45], the latter two subsections summarize the discussion
of SGWBs from FOPTs in [12, 26].

2.5.1 Gravitational radiation

The Einstein equations (2.1) are manifestly invariant under the coordi-
nate transformations xµ → x′µ(x), where x′µ is an arbitrary smooth
function10 of xµ. Under these transformations, the metric transforms
as

gµν(x)→ g′µν

(
x′
)
=

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) , (2.64)

which can be seen as the gauge symmetry of GR. Now, consider small11

perturbations around the Minkowski metric gµν(x) = ηµν + hµν(x) andSmall perturbations
of the flat metric the coordinate transformation xµ → x′µ = xµ + ξµ(x). One finds that

under this change of coordinates, the metric perturbation transforms
to lowest order as

hµν(x)→ h′µν(x′) = hµν(x)−
(
∂µ ξν + ∂ν ξµ

)
. (2.65)

If O(|∂µ ξν|) ≤ O(|hµν|), the condition |hµν| � 1 is preserved and the
coordinate transformation is a symmetry of the whole theory. Thus,
the Riemann tensor is not only covariant under general coordinate
transformations gµν(x) → g′µν(x′) but (to leading order) invariant
under hµν(x)→ h′µν(x′). We can therefore evaluate the Einstein equa-
tions in dependence of hµν instead of h′µν. Defining h ≡ ηµνhµν and
h̄µν ≡ hµν − 1

2 ηµνh allows us to write the linearized field equations as

� h̄µν + ηµν ∂α ∂β h̄αβ − ∂α ∂ν h̄α
µ − ∂α ∂µ h̄α

ν = −2
Tµν

m2
Pl

(2.66)

10 More precisely, x′µ has to be invertible, differentiable and its inverse has to be
differentiable, i. e. x′µ(x) is an arbitrary diffeomorphism.

11 Here, “small” means that there exists a frame in which |hµν(x)| � 1 holds in a
sufficiently large region of space-time.
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with the flat-space d’Alembertian � = ∂µ ∂µ. We can further simplify
this result by deploying the Lorentz12 gauge ∂ν h̄µν = 0, under which Imposing the Lorentz

gauge yields a wave
equation

the field equations become the simple wave equation

� h̄µν = −2
Tµν

m2
Pl

, (2.67)

since partial derivatives commute. This gauge can be imposed here,
since h̄µν transforms under the proposed change of coordinates as

h̄µν → h̄′µν = h̄µν −
(
∂µ ξν + ∂ν ξµ − ηµν ∂α ξα

)
, (2.68)

such that for its space-time derivative

∂νh̄µν →
(
∂ν h̄µν

)′
= ∂ν h̄µν −� ξµ

!
= 0 (2.69)

holds. The condition � ξµ = ∂ν h̄µν for the last equation to hold can be
achieved by fixing the coordinate transformation to

ξµ(y) =
∫

d4x G(x− y) ∂ν h̄µν(y) , (2.70)

where G(x − y) is the Green’s function of the d’Alembertian, so a
solution of �x G (x− y) = δ4(x− y). Note that imposing the Lorentz
gauge by choosing the components of ξµ according to (2.70) reduces
the degrees of freedom of the symmetric tensor field h̄µν to 10− 4 = 6.

To study the free propagation of the waves described by (2.67), set GWs in vacuum

Tµν = 0. The resulting equation � h̄µν = 0 already tells us that GWs in
vacuum travel with the speed of light. To further discuss the physical
effects of such a wave, it is worth noting that the imposed condition
∂ν h̄µν = 0 did not fix the gauge completely as (2.69) is not spoiled by
another coordinate transformation xµ → xµ + ξµ with � ξµ = 0. Under
this condition, also the quantity ξµν ≡ ∂µ ξν + ∂ν ξµ − ηµν ∂α ξα fulfills
� ξµν = 0, such that (2.68) tells us that we can subtract ξµν, sufficing
the four conditions � ξµ = 0, from the six independent components of
h̄µν without changing the wave equation (2.67). Hence, we can choose
the function ξµ so as to impose four additional conditions on the
metric perturbation.

In particular, one can choose ξ0 such that the trace h̄ = 0 vanishes
and h̄µν = hµν holds. Moreover, one can choose the three functions ξ i

such that hi0 = 0. The 0-component of the Lorentz gauge condition
∂ν h̄µν = 0 now directly shows that ∂t h00 = 0, which means that

12 In GR, the gauge ∂µ
(

gµν√g
)
= 0 defined for a curved background reduces to the

Lorentz gauge for small metric perturbations. Amusingly, the usual term “Lorentz
gauge” (analog to ∂µ Aµ = 0 in electromagnetism) is a misnomer. The gauge was
first used by the Danish physicist Ludvig Valentin Lorenz when the more famous
Dutch physicist Hendrik Antoon Lorentz was still a child. In fact it is even worse:
None of these two invented the gauge used here, but in fact it was Willem De Sitter
who suggested the (later called) “harmonic gauge” to Einstein [46].
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h00 (describing a Newtonian potential) is time-independent and thus
a constant. The GW itself is the time-dependent part of the metric
perturbation. One can therefore follow that also h00 = 0 must hold in
our case.

So, in total we are left with h0µ = 0 and the only non-zero contribu-
tions to hµν come from its spacial parts hij. Hence, the Lorentz gauge
condition simplifies to ∂i hij = 0 and the condition of the vanishing
trace becomes h = ηµν hµν = hi

i = 0. This set of conditions is known as
the transverse-traceless (TT) gauge:The TT gauge

h0µ = 0 , hi
i = 0 , ∂i hij = 0 , (2.71)

leaving only two independent degrees of freedom to hµν. Note that
this gauge cannot be chosen in the presence of sources Tµν

13.

The monochromatic plane wave solution of (2.67) in the absence of
sources and in TT gauge reads hij(x) = eij(k) eikx, where eij(k) is a
polarization tensor to account for the two independent DOFs of a GW.
The usual convention that the real part is taken after the calculation is
implied and the wave vector is defined as kµ ≡ (ω, k) with ω = |k|.
For a plane wave the transversality condition ∂i hij = 0 from equationThe plane wave

solution (2.71) becomes ni hij = 0 with n̂ ≡ k/|k|. Choosing the wave vector
kµ = (ω, 0, 0, ω) yields

(
hµν

)
(t, z) =




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0




cos [ω (t− z)] (2.72)

with the two degrees of freedom of a GW described by a +- and a
×-polarization, leading to the infinitesimal line element

ds2 =dt2 − dx2 {1 + h+ cos [ω (t− z)]}
− dy2 {1− h+ cos [ω (t− z)]}
− 2 dx dy h× cos [ω (t− z)]− dz2 .

(2.73)

The chosen wave vector now illustrates neatly the effect of an incoming
monochromatic GW from the z-direction on two test masses (or events)
at (t, x1, 0, 0) and (t, x2, 0, 0): Their coordinate distance L = x2 − x1

remains constant, while their proper distance changes periodically

s = L
√

1 + h+ cos (ω t) ' L
[

1 +
1
2

h+ cos (ω t)
]

. (2.74)

13 The procedure presented here is completely analog to the gauge fixing in elec-
tromagnetism: The classical equations of motion in the presence of sources read
∂µ (∂µ Aν − ∂ν Aµ) = jν, simplifying to � Aµ = jµ after imposing the Lorentz gauge
∂µ Aµ = 0, leaving untouched the residual gauge freedom Aµ → Aµ − ∂µ θ with
� θ = 0. Outside the source, � Aµ = 0 holds and the residual gauge freedom � θ = 0
can be used to fix A0 = 0, rendering the Lorentz condition effectively a transversality
condition ∂i Ai = 0. In the presence of a source j0 6= 0 we see that � A0 6= 0 such that
A0 cannot be set to zero using a function θ that satisfies � θ = 0.
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If the two test masses are mirrors reflecting a light beam back and forth, The working
principle of GW
interferometry

the calculated proper distance between these two masses describes an
oscillation of the time difference between the reflections. This is the
working principle of the interferometers used for GW detection14.

More generally, the proper distance of two test masses, whose spacial
coordinates differ by a vector L with modulus L, is given by s2 =

L2 + hij(t) Li Lj. Up to leading order in the metric perturbation the
proper distance is given by s ' L + hij(t) Li Lj/ (2 L), implying

s̈ ' 1
2

ḧij
Li

L
Lj ⇒ s̈i '

1
2

ḧij Lj '
1
2

ḧij sj , (2.75)

where si = s L/Li has been introduced. Therefore, the physical effect
of the two polarization modes can be made clear by considering
the change in the proper distance of the spacial coordinate origin at
(t, 0, 0, 0) and a test mass at (t, x0, y0, 0) when a GW with a certain
polarization propagates through them. While a +-polarized GW leads
to the shifts

δsx '
h+
2

x0 cos(ωt) , δsy ' −
h+
2

y0 cos(ωt) (2.76)

of the proper distance between the two bodies along the x- and y-
axes, a ×-polarized GW results in the shifts

δsx '
h×
2

y0 cos(ωt) , δsy '
h×
2

x0 cos(ωt) (2.77)

in the proper distance. A sketch of these effects on a ring of test masses
can be found in Figure 2.11.

2.5.2 Energy and momentum of gravitational waves

It is already clear from the discussion of the effect of a GW on test
masses, that also gravitational radiation must carry energy and mo-
mentum. In particular, this can be seen from the fact that the inter-
action with matter can be described as a Newtonian force giving
kinetic energy to the test masses. To find the corresponding energy-
momentum tensor, one can perform two independent calculations
giving the same result. The details of these calculations are of no
further interest here. Nonetheless, to get a feel for where the resulting
energy-momentum tensor comes from, we describe briefly the gen-
eral method of both calculations. A detailed description of the actual

14 Interestingly, the same calculation can be made without the need to impose a TT

gauge frame, in which the coordinates of the test masses are by definition constant,
but in the proper frame of the detector with the same physical result: For two nearby
test-masses moving along their geodesics x(τ) and x(τ) + ξ(τ) with a common
proper time τ, the effect of a passing GW can be described as a Newtonian force
Fi =

m
2 ḧij ξ j [45].
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x

y

(a) +-polarization

x

y

(b) ×-polarization

Figure 2.11: The influence of a GW propagating in z-direction on a ring of
test masses lying in the x-y-plane. The saturation of the colors
indicates the time dependence of the test masses’ positions.

computations can be found in the chapters 1.4 and 2.1 of reference
[45].

First, one can calculate the space-time curvature due to the GWs them-
selves bending the background metric. One can then reuse the Einstein
equations in a “backward” fashion to find the energy-momentum ten-How GWs curve the

background metric sor corresponding to the evoked curvature. To do this, it is necessary
to reformulate the already done calculations in terms of a generally
dynamic background metric such that gµν(x) = ḡµν(x) + hµν(x). This
description is similar to the division of water waves in the sea into
background waves coming from the incoherent superposition of waves
of diverse origins and a single wave propagating in this background.
Obviously, there exists some ambiguity of choice to define which part
of the vertical motion of the sea’s surface belongs to which origin.
However, there are cases in which a natural splitting of the origins is
possible. Of particular interest in our case is the splitting of frequency
scales which leads to a kind of renormalization group procedure sepa-
rating the high-frequency part of the metric (belonging to hµν, i. e. the
gravitational wave) and the low-frequency part (representing quasi-
static Newtonian potentials). Using this method, one can effectively
integrate out the short-wavelength degrees of freedom by performing
a spatial average of the Einstein equations in volumes defined by some
intermediate length scale to obtain the energy-momentum tensor of a
GW.

The second method treats linearized gravity as a classical field theory
and applies Noether’s theorem to get the energy-momentum tensorTreating linearized

gravity as a classical
field theory

as a conserved current related to the invariance under space-time
translations. In this approach we forget about the interpretation of hµν

as a metric perturbation and deal with it as with any other classical
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field living in flat space-time with the Minkowski metric ηµν. A general
infinitesimal transformation xµ → xµ + εa Aµ

a (x) under which the
classical fields φi transform as φi(x)→ φi(x) + εa Fi,a (φ, ∂φ) is defined
to be a symmetry transformation if it leaves the theory’s action S [φ]
invariant. Therein Aµ

a (x) is known as the generator of the symmetry
as it specifies the symmetry transformation, and Fi,a is a function
of the fields φi and their derivatives. The symmetry is global for the
parameters εa being constants and local in the case when they are
arbitrary functions of x. Noether’s theorem then states that for every
generator εa of a global symmetry, there is a conserved current. In the
most general case, this current is given by

jµ
a =

∂L
∂
(
∂µ φi

) [Aν
a(x) ∂ν φi − Fi,a (φ, ∂φ)]− Aµ

a (x)L , (2.78)

where L is the Lagrangian density of the classical field theory. If
the action is globally invariant under space-time translations, this
yields the energy-momentum tensor as a conserved Noether current.
This is precisely the case in linearized gravity, since hµν is invariant
under transformations15 xµ → xµ + aµ, where aµ is not restricted to
be infinitesimal, but can be finite as one can see from (2.64). However,
since L is only defined up to total divergences, Noether currents are
not uniquely defined16. Hence, a conserved Noether current is not
necessarily a physical observable but rather a quantity that, when
integrated over space, gives unambiguously the physical conserved
charge as long as the field configuration goes to zero sufficiently fast
at the boundaries of the integrated region. Equivalently, instead of
speaking about localized quantities, one can perform averages over
large enough regions of space such that the ambiguity related to the
total divergences disappears.

In the end of either of these calculations, one finds the following result: Energy-momentum
tensor of a GW

tµν =
m2

Pl
4
〈∂µ hαβ ∂ν hαβ〉 , (2.79)

which can be shown to be independent of the choice of gauge. The
brackets 〈·〉 are understood to be a spacial average over many wave-
lengths in the case of λ

2 π � LB or analogously a time average over
many periods 1/ f in the case of f � fB, where λ and f are a char-
acteristic wavelength and frequency of the GW while LB and fB are
characteristic length and frequency scales of the background met-

15 In fact, linearized gravity is symmetric also under finite Lorentz translations and
rotations. The theory thus obeys a Poincaré symmetry in contrast to full GR. Therefore,
not only energy and momenta are conserved, but also angular momenta and the
center of mass of a GW.

16 This is the reason why in electromagnetism there exist several conserved enerygy-
momentum tensors out of which some are not even gauge-invariant.
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ric. In particular, after choosing the TT gauge, this yields the (again,
gauge-invariant) energy density

ρGW = t00 =
m2

Pl
4
〈∂t hij ∂t hij〉 . (2.80)

2.5.3 Stochastic backgrounds

Using a plane wave expansion for the solution of the gravitationalSuperposition of
plane waves wave equation 2.67 in vacuum and employing the TT gauge, one can

generally write [7, 45]

hij(t, x) = ∑
A=+,×

∫ +∞

−∞
d f
∫

d2n̂ h̃A ( f , n̂) eA
ij (n̂) e−2 π i f (t−n̂·x)

(2.81)

with e+ij (n̂) = ûi ûj − v̂i v̂j and e×ij (n̂) = ûi v̂j − v̂i ûj, where û and v̂
are unit vectors orthogonal to the propagation direction n̂ of the GW

and each other. A stochastic background is now defined as the case
where the GW amplitudes h̃A ( f , n̂) are random variables, character-
ized statistically by their ensemble averages. Since we obviously have
only one realization of our Universe, this ensemble average is replaced
by a temporal average by use of the ergodic hypothesis.

To simplify this general result, the following assumptions on stochasticAssumptions on
SGWBs backgrounds are usually made [45]:

stationarity: The two-point correlator 〈hA(t) hA′(t′)〉 can only de-
pend on the time difference t− t′ and not separately on t and
t′. This assumption is well justified17 considering the different
time scales of the detection (typically a few years) and the age
of the signal (typically of the order of the age of the Universe).
Stationarity also implies that 〈hA(t)〉 must be a constant (the-
oretically contributing to vacuum energy). However, since we
are interested only in GWs, so the time-dependent part of metric
fluctuations, we can set 〈hA〉 = 0 in our analysis.

gaussianity: The central limit theorem states that a large ensemble
of independent events produces a Gaussian stochastic process,
regardless of the probability distribution of the individual events.
This is expected to hold for cosmological backgrounds. As in the
case of the CMB anisotropies, gaussianity states that all N-point
correlators are functions of 〈hA〉 (which we have set to zero)
and the two-point correlator 〈hA(t) hA′(t′)〉. The assumption of
gaussianity would not hold for the case of an astrophysical

17 A detailed discussion of this assumption and what changes when dropping it can be
found in reference [47].
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stochastic background with only a few almost indistinguishable
contributions. In that case, further information could be gained
using higher-point correlators.

isotropy: As in the case of the CMB (where the anisotropies are of
orderO (∆T/T) ∼ 10−5), we expect that a stochastic background
of cosmological origin is isotropic in first approximation. Thus,
waves coming from different directions should be uncorrelated
such that in Fourier space 〈h̃∗A ( f , n̂) h̃A′ ( f ′, n̂′)〉 is proportional
to δ2 (n̂, n̂′) = δ (φ− φ′) δ (cos θ − cos θ′), where φ and θ are the
polar angles defining n̂. Further, the constant of proportionality
should not depend on n̂. A potential dipole-term will tell us
about our motion with respect to the CMB frame while higher-
order poles can decode valuable information on the very early
Universe. For the case of astrophysical backgrounds (especially
when coming from our galactic plane) the assumption of isotropy
has to be dropped.

no polarization: It is natural to assume that a background of cos-
mological origin (or from many different astrophysical sources)
is unpolarized. This means, that 〈h̃∗A ( f , n̂) h̃A′ ( f ′, n̂′)〉 is propor-
tional to δAA′ and that the respective prefactor is independent of
the polarization index A.

Adopting these assumptions, a stochastic background is completely Describing an SGWB
with the spectral
density Sh( f )

characterized by the so-called spectral density Sh( f ) defined by

〈h̃∗A ( f , n̂) h̃A′
(

f ′, n̂′
)
〉 = 1

4 π
δAA′ δ

(
f − f ′

)
δ
(
φ− φ′

)

× δ
(
cos θ − cos θ′

) 1
2

Sh( f ) ,
(2.82)

where the factor (4π)−1 was chosen as a choice of normalization for
the integration over n̂ and the factor 1

2 was chosen to be consistent
with the definition of one-sided noise spectral densities. The spectral
density Sh( f ) has the unit Hz−1 and satisfies Sh( f ) = Sh(− f ). Using
the normalization of the polarization tensors ∑A eA

ij eA
ij = 4, one thus

obtains for hij(t) ≡ hij(t, x = 0)

〈hij(t) hij(t)〉 = 4
∫ ∞

0
d f Sh( f ) . (2.83)

A better physical understanding of the spectral density for stochastic
backgrounds Sh( f ) can be achieved by finding its dependence on
the energy density ρGW carried by a GW as defined in (2.80). The
energy density ρGW can be normalized to the critical energy density
ρc ≡ 3 m2

Pl H2 needed for closing the universe,

ΩGW ≡
ρGW

ρc
=
∫ f=∞

f=0
d (log f )

1
ρc

dρGW

d log f
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=
∫ f=∞

f=0
d (log f ) ΩGW( f ) . (2.84)

The spectral density dρGW/ d log f for the energy density ρGW and the
spectral density ΩGW( f ) of the normalized energy density ΩGW have
been introduced in their conventional notation. Note that dρGW/ d log f
is not an actual derivative but rather a symbol to denote the spectral
density defined as energy per unit logarithmic interval of frequency.
This has the advantage that the resulting quantity ΩGW( f ) is dimen-
sionless. This ambiguity of notation is tolerated here, since it is the
conventional nomenclature in the literature. As discussed in the last
section 2.5.2, the brackets 〈·〉 in the definition of ρGW in equation (2.80)
denote a time average. However, under the ergodic assumption, this
is equivalent to the ensemble average discussed above. After plugging
in the plane wave expansion (2.81) into (2.80) and performing the
ensemble average using (2.82), one finds

ρGW = m2
Pl

∫ f=∞

f=0
d (log f ) f (2 π f )2 Sh( f ) , (2.85)

from which follows the wanted expression [45]The spectral energy
density ΩGW( f )

ΩGW( f ) =
4 π2

3 H2 f 3 Sh( f ) . (2.86)

2.5.4 The spectrum of gravitational waves from first-order phase
transitions

To connect the calculation of the spectral density ΩGW( f ) with FOPTs it
is still necessary to discuss how a metric perturbation hµν can be gen-
erated. Using the method of Green’s functions for the wave equation
(2.67) and performing a multi-pole expansion of the source energy-
momentum tensor Tµν, one can find that the metric perturbation inSources of GWs

the TT gauge can be calculated to leading order as

hij(t, x) =
1

4 π r

Q̈TT
ij (t− r)

m2
Pl

, (2.87)

where r = |x| is the distance to the source and QTT
ij = Qij − 1

3 δij Qk
k is

the TT representation of the quadrupole tensor [26, 45]

Qij(t) =
∫

d3x′ T00(t, x′) x′i x′j . (2.88)

Therefore, only the time-dependent and anisotropic, hence non-spheri-
cal motions of energy densities source GWs. This is the reason why the
expansion of a bubble in an FOPT does not emit gravitational radiation,
but why the collision of bubbles eventually will.
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The careful analysis of the quadrupole tensor in computer simulations
of FOPTs combined with analytical and numerical work showed that
the SGWB spectrum from phase transitions can be calculated by sum-
ming over the contributions from bubble collisions, density (“sound”) Parametrization of

an FOPT backgroundwaves in the plasma that later on also collide, and magnetohydrody-
namic (MHD) turbulence. The resulting expression for the spectrum at
its emission reads

ΩGW( f ) ' ∑
sources

N ∆
(

κ α

1 + α

)p (H
β

)q

s( f ) , (2.89)

where the parameters N , κ, p, q, ∆, fp and the power law spectral
shape s( f ) depend on the kind of GW source [12]. An overview of
these quantities can be found in table 2.1. Note that the given values
and formulas are rather to be understood as approximations and do
not represent the most recent and precise methods to calculate GW

spectra. An analysis of the theoretical uncertainties coming with this
comparably low level of diligence can be found in reference [48], for
instance.

Collisions Sound waves MHD turbulence

N 1 1.59× 10−1 2.01× 101

κ κφ κsw εturb κsw

p 2 2 3
2

q 2 1 1

∆ 0.11 v3
w

0.42+v2
w

vw vw

fp
0.62 β

1.8−0.1 vw+v2
w

2 β√
3 vw

3.5 β
2 vw

s( f ) 3.8 ( f / fp)2.8

1+2.8 ( f / fp)3.8

(
f
fp

)3 (
7

4+3 ( f / fp)2

)7/2 ( f / fp)3

(1+ f / fp)11/3[1+8 π ( f /H)]

Table 2.1: The SGWB of an FOPT has contributions from the collision of bub-
ble walls, sound waves, and MHD turbulence. The quantity N
normalizes the spectrum, κ is an efficiency factor that describes
how much of the phase transition’s latent heat is available for
the respective process, p and q quantify the impact of the FOPT

strength α and the inverse timescale β/H on the GW spectrum, ∆
indicates the effect of the bubble wall velocities vw, and fp quanti-
fies the peak of the power-law frequency spectrum of the different
contributions. Ultimately, s( f ) describes the general shape of the
power-law spectra corresponding to the different sources. A de-
tailed description of the origin of these quantities can be found in
reference [49].

The quantity α is a measure of the strength of the FOPT and is propor-
tional to the amount of energy density released in the phase transition.
As seen in section 2.3, the effective potential resembles a free energy
density f = Veff(φ, T) that tends to be minimal by the principle of
stationary action. Since (neglecting chemical potentials), the thermal
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bath of particles can be described by a canonical ensemble, the ther-
modynamical relations s = −∂T f and ρ = f + T s hold. Hence, the
latent heat of the phase transition is given by

ε = −∆ f − Tn ∆s =
(
−∆Veff + Tn

∂∆Veff

∂T

)∣∣∣∣
T=Tn

> 0 , (2.90)

where ∆ denotes the difference between the respective quantities
before and after the transition from the false to the true vacuum state
[12, 26]. The function ∆Veff(T) < 0 denotes the difference in potential
energy density between the two vacua. To receive a dimensionlessThe transition

strength α quantity, the latent heat is normalized to the total energy density of
the surrounding plasma of relativistic species ρ ' ρrad (assuming a
radiation-dominated Universe), such that

α ≡ ε

ρrad
. (2.91)

The derivative of the logarithmized bubble nucleation rate Γ(T) ∝
exp [−S3(T)/T] with respect to time at the nucleation temperature Tn

corresponds to an inverse time-scale of an FOPT (see Figure 2.10). In
the following, the inverse time-scale β/H is used, which is normalized
to the inverse Hubble time H(Tn) at nucleation, giving a meaningful
reference scale for cosmology. This normalization occurs naturallyThe inverse

time-scale β/H when switching from time to temperature derivatives:

β

H
≡ Tn

d
dT

(
S3(T)

T

)∣∣∣∣
T=Tn

. (2.92)

A fast transition happens on a short time-scale and thus leads to
a large β/H, which damps the resulting spectrum ΩGW ∝ (H/β)q

with q = 1 or q = 2, depending on the production mechanism of the
GWs. This damping is due to the almost simultaneous production of
bubbles in a fast transition, which will eventually collide while still
being relatively small. In the opposite case of a slow transition, the
bubble nucleation rate is low and eventually larger, more energetic
bubbles collide. Since the small bubbles after a fast transition collide
more frequently than in the opposite case, the corresponding spectrum
will also peak at a higher frequency [12].

The efficiency factors κ of the three contributions are functions of the
transition strength α and depend further on the coupling between the
plasma and the bubble wall. If α exceeds a threshold strength α∞, the
bubble walls can accelerate continuously (i. e. the “runaway regime”),Runaway bubbles

while in the opposed case there will be a terminal velocity (i. e. the
“non-runaway regime”). In the non-runaway regime, κφ = 0 since the
contribution from bubble collisions is negligible, as the latent energy
of the phase transition can be efficiently converted into plasma motion.
In that case κsw is given by

κ(α) ' α

0.73 + 0.083
√

α + α
(2.93)
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for vw ∼ 1 [49]. Conversely, in the runaway regime only a fraction
α∞/α of ε is converted into plasma motion and the remaining energy
density accelerates the bubble walls. Hence, κφ = 1− α∞/α and κsw =

κ(α∞) α∞/α hold. In either case, a fraction of the bulk motion energy
of εturb ' 10 % is converted into turbulence. We employ this optimistic
approximation as it is done in [12].

The bubble wall velocity vw is the most intricate parameter, since its cal- The bubble wall
velocity vwculation requires knowledge of the diverse, highly model-dependent

particle processes that happen at the bubble wall. In general, the colli-
sion of particles in the plasma with a bubble exerts a non-negligible
pressure on its moving wall. Additionally, next to the mere change
of momentum of particles being reflected, there is also an additional
friction term due to transition radiation by gauge bosons, which is
likely to dominate over the friction from particles colliding with the
wall [50]. A detailed analysis of the processes happening at the bubble
wall requires the solution of Boltzmann-like equations and is still a
subject of current research. However, for sufficiently strong FOPTs, the
bubble walls will quickly reach luminal velocities. Since strong phase
transitions are favorable for detectable SGWB signals, we will focus on
sufficiently strong transitions for which vw ∼ 1, and remain agnostic
about the details of the bubble wall dynamics.

One central result from the balance of friction terms and forward
driving pressure, however, is the critical transition strength α∞ for The critical

transition strength
α∞

non-runaway bubbles. One eventually finds that the friction exerted
by particles getting (more) massive in an FOPT is approximately given
by

Pfric ≈ ∆VT ≈ T2

[
∑

b

nb

24
∆m2

b(φ) + ∑
f

n f

48
∆m2

f (φ)

]
. (2.94)

The condition ε > Pfric for runaway bubbles is thus equivalent to α >

α∞ ≡ ∆VT/ρrad, which will be used as a definition for the threshold
transition strength. Note that the expression in (2.94) is meant to sum
over all changing physical particle masses, including longitudinal
gauge boson modes, but excluding Goldstone boson modes [51].

After its emission, the SGWB propagates freely and undisturbed until
today, effectively being a form of dark radiation18. The expansion of
the Universe, however, redshifts both its amplitude and its frequency The spectrum’s

redshiftsuch that today’s power spectrum, Ω0
GW( f ), can be expressed as

Ω0
GW( f ) = RΩGW

(
a0

an
f
)

, (2.95)

where f denotes the spectrum’s frequency in today’s units, which is
shifted to its value at nucleation by multiplication with the scale factor

18 This is not precisely true, see e. g. [52]. Since the effects that change the propagation
of the GW are subdominant, we will however stick to that nomenclature.
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ratio a0/an, where an (a0) is the scale factor at nucleation (today) [12].
The amplitude of the spectrum redshifts like a−4 H−2, since the energy
density of radiation scales with a−4, while the critical energy density
ρc with which ρGW is normalized scales with H2. The prefactor R is
thus defined as

R ≡
(

an

a0

)4 (Hn

H0

)2

. (2.96)

In the following chapter 3, we will see how the dilution effect by
the out-of-equilibrium decay of a dark sector into SM particles can
contribute to the the ratio a0/an and the quantity R. We will then
discuss the impact of the phase transition parameters α, β/H and Tn

on the spectrum and show exemplary plots of the calculated signal
strengths including the additional dilution effect. In the following,
we will omit the index “0” in Ω0

GW( f ), as we will always refer to
red-shifted spectra.

2.5.5 Detection of stochastic backgrounds

To quantify the detectability of an SGWB, several measures have been
invented. We will follow a frequentist approach by calculating SNRs.
The optimal-filter cross-correlated SNR is given bySignal-to-noise

ratios

ρ2 = 2 tobs

∫ fmax

fmin

d f
[

h2 ΩGW( f )
h2 Ωeff( f )

]2

, (2.97)

where tobs is the duration of the observation, ( fmin, fmax) is the detec-
tor’s frequency band, and h2 Ωeff( f ) is the effective noise spectrum
expressed in the same units as the spectral gravitational wave energy
density [12]. The constant h ≡ H0/(100 km s−1 Mpc−1) ' 0.68 de-
notes the dimensionless Hubble constant, which is introduced to make
the signal spectra independent of the physical value of the Hubble
constant H0 [16]. The effective noise spectrum h2 Ωeff( f ) quantifies
not only detector noises but includes also contributions from other
unresolved backgrounds, e. g. expected astrophysical SGWBs. If the
experiment consists of only a single detector, the factor 2 in (2.97)
has to be dropped to account for an auto-correlation rather than a
cross-correlation. We will refer to an SGWB as being observable if ρ is
greater than a certain threshold value ρthr. A list of threshold SNRs for
experiments with a range of detectable frequencies relevant for the
following analysis can be found in table 2.2.

For power-law spectra is has become standard to also quote so-calledPower-law
integrated sensitivity

curves
power-law integrated (PLI) curves h2 ΩPLI( f ), which allow for an im-
mediate decision whether a signal h2 ΩGW( f ) is observable or not by
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Experiment Frequency range ρthr tobs Auto-correlated?

LISA 10−5 − 1 Hz 10 4 yrs 3

B-DECIGO 10−2 − 102 Hz 8 4 yrs 3

DECIGO 10−3 − 102 Hz 10 4 yrs 7

BBO 10−3 − 102 Hz 10 4 yrs 7

ET 1− 104 Hz 5 5 yrs 3

Table 2.2: Assumed threshold SNRs ρthr of future space-based and ground-
based interferometers for SGWBs as well as their expected duration
of observation tobs and frequency range. While DECIGO and BBO

will consist of networks of GW detectors, LISA, B-DECIGO and ET

will be single-detector observatories. In these cases, the cross-
correlation SNR in (2.97) has to be replaced by an auto-correlation
measure. The corresponding expression is found to be the same,
but with the prefactor 2 tobs replaced by tobs. The values and
assumptions in this table are taken from [12].

just looking for intersections of the two curves. Assuming that the
latter follows a power-law with spectral index b, i. e.

h2 ΩGW( f ) = h2 Ωb

(
f
f̄

)b

, (2.98)

where h2 Ωb is the GW spectral energy density at an arbitrarily chosen
pivot frequency f̄ , the SGWB will be observable if

h2 Ωb > h2 Ωthr
b ≡

ρthr√
2 tobs



∫ fmax

fmin

d f

( (
f / f̄

)b

h2 Ωeff( f )

)2


− 1

2

. (2.99)

The PLI sensitivity function h2 ΩPLI( f ) can then be obtained by evaluat-
ing the right-hand side of (2.99) in dependence of the spectral index b
to determine the envelope of the corresponding power-law spectra as
the sensitivity limit of the experiment. Thus, the PLI sensitivity curve
can be expressed as

h2 ΩPLI( f ) = max
b

[
h2 Ωthr

b

(
f
f̄

)b
]

. (2.100)

Strictly speaking, the interpretation that h2 ΩPLI( f ) describes the ex-
perimentally accessible region of a detector is only true for spectra
that follow a power-law in the whole frequency range of the detector
[12]. However, as we have seen, SGWBs from FOPTs follow at least ap-
proximately broken power-laws. Therefore, this method is useful but
not precise. This is why we will still use the direct calculation (2.97)
to calculate SNRs and investigate the detectability of signals, but why
plots with PLI instead of spectral noise curves will be presented. In
Figure 2.12, the effective noise spectra h2 Ωeff( f ) and the PLI curves
h2 ΩPLI( f ) for the GW observatories from Table 2.2 are shown.
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Figure 2.12: Plots of the expected effective noise energy spectrum h2 Ωeff and
the corresponding PLI sensitivities for future space- and ground-
bases GW observatories. The dips in h2 Ωeff for LISA, B-DECIGO

and DECIGO stem from the expected unresolved background
from galactic and extra-galactic compact binaries, i. e. white
dwarfs orbiting each other and emitting gravitational radiation,
resulting in an astrophysical SGWB. The data underlying these
curves has been taken from the ancillary material of [12]. Note
that these curves represent only speculative estimates of experi-
mental sensitivities, since the corresponding observatories still
have to be built before they can start taking data.



3 T H E D E C AY O F A H OT DA R K
S E C TO R

The general description of particle cosmology, phase transitions, and
SGWBs is now finished and we can go over to the investigation of DSs.
This chapter is aimed at being as general as possible in the description
of the evolution of a DS, even though some assumptions on a specific
dark sector model will be made. To be more precise, we will focus
on the case of a DS that has previously featured an FOPT due to the
thermal tunneling of a dark Higgs field to a new VEV as described in
detail in the last chapter. Moreover, we assume the DS to be decoupled Limits of this general

description of the DS
evolution

from the particle species of the SM since some point in time before the
phase transition, until it (re-)enters into contact with the SM thermal
bath upon its decay. We further assume that the decaying DS consists of
only one leftover species. Therefore, all other DS species are assumed
to become Boltzmann-suppressed sufficiently long before the lightest
dark sector species decays, to which we will refer as “the mediator” in
this chapter. To be able to ignore the inverse decays from SM particles
to the mediator, we will only consider non-relativistic decays thereof
[24].

3.1 what is a hot dark sector?

We will start this chapter by defining what we precisely mean when
we speak about “decaying hot dark sectors” and what the origin of
experimental constraints on DSs are. Prior to that, it will prove to be
useful to revisit the thermal bath formed by the frequent interactions
of the SM photon.

Unlike most of the elementary particle species of the SM, photons
are still abundant in the current Universe. Conversely, massive gauge
bosons decayed as they are short-lived particles, quarks quickly be-
came confined by forming bound states, and charged leptons and anti-
leptons annihilated or bound to ionized nuclei. Moreover, contrary to
neutrinos, photons were always1 tightly coupled to other electrically The thermal bath of

SM particlescharged particles, thus forming an LTE with the other species during
large parts of the Hot Big Bang scenario. We will therefore refer to the

1 Technically, this argument holds only after the EWPT, as before photons did not exist.
At higher temperatures, however, the same argument would hold for the photons’
predecessors, the massless gauge bosons for weak isospin and hypercharge.

49
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thermal bath that forms by the interaction of photons as the “SM bath”
and denote its temperature with TSM. Using this quantity, we can refer
to different times in the primordial Universe. In fact, we already did
so in the introduction, when we associated temperatures as well as
times with the different epochs in the chronology of the Universe in
Figure 2.2.

Analogously to the SM bath, there can exist other, still unobserved
sectors of particle physics without large couplings to the SM bath
that form a distinct thermal bath with a different temperature. In
fact, considering the amount of DM, it appears probable that sectors
with BSM physics exist or had been important at some point in the
evolution of the Universe [23]. We will thus define a thermal bath
with a temperature TDS with sufficiently low thermal contact to theOur definition of a

hot dark sector particles of the SM as a dark sector. Further, if TDS > TSM, we say that
the DS is “hot”.

The effect of a DS on the evolution of our Universe can in theory
be due to two possible causes [24]: First, a DS contributes to the
total energy density ρtot and will thus enlarge the Hubble parameter,
effectively shortening the time-scales on which different processes in
the Universe can take place. The second effect of a DS on cosmology is
due to the possible interactions with SM particle species. While in theTwo separate effects

on ΛCDM cosmology case of a perfectly secluded DS this point does not occur, an interaction
between the sectors can lead to interesting effects. One example of a
simple and rather well-understood dark sector are sterile neutrinos
[23], which carry no SM charges and might explain some of the gaps
in our theories, like DM, neutrino masses or baryogenesis.

Due to these two possible impacts on the ΛCDM cosmology, the pa-
rameter space of possible DSs can be constrained. First, ρtot cannot
exceed the critical energy density ρc ≡ 3 m2

Pl H2 as it would overclose
the Universe (i. e., prevent it from attaining its present age through its
early collapse). This constraint can be evaded by giving the lightest DSExperimental

constraints on
generic DSs

species, which could eventually dominate ρtot and exceed ρc, a decay
channel to SM particles. However, if we evade this constraint by letting
the DS decay to dispose of its energy density, there still exist stringent
bounds on when this decay must have happened. In reference [12], it
is argued that for sub-MeV DSs the main constraints come from CMB

and BBN, as relativistic dark particles would change the dynamics of
these processes by setting a different time-scale H−1 or reheating the
photon or neutrino bath.

The constraints on account of these effects can be parameterized by
the effective number of neutrino species, whose most conservative
constraint Neff = 2.99+0.34

−0.33 was obtained by the Planck collaboration
in 2018 by combining several individual measurements of the CMB

anisotropies and polarization, and baryon acoustic oscillations [16].
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The constraints on Neff, which stem from the changes in the predicted
light element abundance by additional relativistic particles at BBN still
being consistent with observations, are of similar strength [16]. A de-
tailed analysis shows that due to these tight constraints, light thermal
relics decoupling after the QCD phase transition can be ruled out at
95 % significance (see Figure 36 in reference [16]). While Breitbach et Evading constraints

through an early DS
decay

al. incorporate these constraints by focusing on DSs colder than the SM

bath [12], our approach will be to let the hot DS decay sufficiently long
before the QCD phase transition starts. The mass scale of the DS in the
following analysis in chapter 4 will therefore lie above 1 GeV.

To study the effects of an additional DS on the evolution of the Universe,
we have to follow the procedure described in chapter 2: After having
added an additional energy density ρDS (including the contributions
from all DS particle species) to ρtot within the first Friedmann equation
(2.4a), we will have to describe the effects of possible interactions
of DS particles with each other and SM particles. As we concentrate
on the specific case of an initially completely secluded DS, the only
relevant interactions are between DS states. Assuming sufficiently The structure of this

chapterstrong interactions between the DS species, an LTE forms between them
such that the discussion from chapter 2.2.2.5 holds. This will allow
us to describe the two sectors as two individual thermal baths whose
dynamics can be expressed using effective DOFs, which will be the aim
of the following section 3.2.

At some point, only the lightest DS species survives, as the heavier
DS particles become Boltzmann suppressed (see equation (2.26a)). The
DS temperature at which this chemical decoupling occurs is denoted
by Tcd

DS. After the chemical decoupling, the mediator evolution will
therefore deviate by what would be dictated by an LTE. We will in-
vestigate its out-of-equilibrium evolution in section 3.3. Finally, the
mediator will live up to its name and decay into SM particles, bringing
the two thermal baths into contact. The equations underlying this
process will be derived and solved numerically in section 3.4. The
overall effect of the decay of the DS on the earlier produced SGWB will
then be investigated in section 3.5.

3.2 local thermal equilibrium of the dark
sector

As mentioned before, we can introduce effective DOFs to elegantly
refer to more than one particle species at once contributing to a ther-
modynamic quantity like the energy or entropy density. The usual Why introduce

effective DOFs?notion of effective DOFs is the mere sum of the bosonic and fermionic
DOFs (the latter coming with a respective prefactor of 7/8) of particles
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being relativistic at a given temperature TSM, see e. g. equation (3.62)
in reference [6]. We will extend this concept to a more general expres-
sion. This specification is of particular importance when dealing with
particles which move too slow to be referred to as ultra-relativistic or
too fast to be considered non-relativistic. Additionally, it allows us to
specify the impact of the temperature ratio between the DS and SM

bath, which we will denote by

ξ(TSM) ≡ TDS

TSM
. (3.1)

Note that this quantity is in general not a constant, but rather aDefinition of the
temperature ratio ξ function of time or, equivalently, TSM. This is due to the separate

conservation of entropy in the two sectors until the mediator decays.
When in one of the sectors a particle species drops out of LTE, its
entropy gets dumped into the coupled, remaining species which there-
fore get reheated. In fact, as we will see, the introduction of effective
DOFs will allow us to quantify and calculate the time dependence of
the temperature ratio ξ.

The energy density and the pressure of an individual species x in
LTE can be calculated by integrating over its thermal (Bose-Einstein or
Fermi-Dirac) distribution function as it was shown in section 2.2.2.5.
If the chemical potential µx vanishes, the calculations simplify to

ρx(Tx) =
gx T4

x
2 π2

∫ ∞

zx

dux
u2

x
√

u2
x − z2

x
eux ± 1

, (3.2a)

Px(Tx) =
gx T4

x
6 π2

∫ ∞

zx

dux

(
u2

x − z2
x
)3/2

eux ± 1
, (3.2b)

sx(Tx) =
ρx(Tx) + Px(Tx)

Tx

=
gx T3

x
2 π2

∫ ∞

zx

dux

[
u2

x
√

u2
x − z2

x
eux ± 1

+
1
3

(
u2

x − z2
x
)3/2

eux ± 1

]
,

(3.2c)

where the substitutions ux =
√

m2
x + p2/Tx, and zx = mx/Tx are

employed, a + (−) sign refers to a fermionic (bosonic) species x
and the penultimate line follows from equation (2.24). Comparing to
equation (2.25b), we can now define the effective DOF of an individual
species by dividing these thermodynamic quantities by the respectiveDefinition of

effective DOFs for a
single species in LTE

quantity that one would obtain for an ultra-relativistic bosonic species
with the same temperature and one intrinsic DOF, hence [53]

gx
eff,ρ(Tx) ≡

ρx(Tx)

ρrel
bos(Tx)

∣∣
g=1

= gx
15
π4

∫ ∞

zx

dux
u2

x
√

u2
x − z2

x
eux ± 1

, (3.3a)

gx
eff,P(Tx) ≡

Px(Tx)

Prel
bos(Tx)

∣∣
g=1

= gx
15
π4

∫ ∞

zx

dux

(
u2

x − z2
x
)3/2

eux ± 1
, (3.3b)
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gx
eff,s(Tx) =

3 gx
eff,ρ(Tx) + gx

eff,P(Tx)

4
, (3.3c)

where ρrel
bos(Tx)

∣∣
g=1 = π2

30 T4
x and Prel

bos(Tx)
∣∣

g=1 = π2

90 T4
x .

The effective DOFs for a thermal bath of particles with a common tem- Effective DOFs of
thermal bathsperature can now be defined as the sum over the individual effective

DOFs of its constituents. In our case, where the total system is given
by a thermal bath of SM and DS particles, we therefore obtain the
following expressions for the total energy and entropy densities

ρtot(TSM) = ρSM(TSM) + ρDS(TSM)

=
[

gSM
eff,ρ(TSM) + gDS

eff,ρ(TSM) ξ4(TSM)
] π2

30
T4

SM , (3.4a)

stot(TSM) = sSM(TSM) + sDS(TSM)

=
[

gSM
eff,s(TSM) + gDS

eff,s(TSM) ξ3(TSM)
] 2π2

45
T3

SM , (3.4b)

where gSM
eff,ρ (gSM

eff,s) denote the effective energy (entropy) DOFs for the
photon bath. The analog notation is used for the DOFs of the DS. Note,
however, that the dark DOFs have a much higher influence on ρtot and
stot than SM particles in the case of a hot DS (i. e., ξ > 1). This effect Why the temperature

ratio ξ is importantis shown in Figure 3.1 for two hot dark sector species in addition to
the particles of the SM bath for ξ = 2. There and in the following,
the quantities in square brackets in (3.4a) and (3.4b) are referred to as
gtot

eff,ρ(TSM) and gtot
eff,s(TSM), respectively.

To calculate the temperature dependence of ξ(TSM), remember that
from equation (2.18) follows that the entropy of the two decoupled
baths is conserved individually. Thus, Sy = 2π2

45 gy
eff,s T3

y a3 is a constant,
where y denotes the SM bath or the DS. Dividing SDS by SSM, replacing
TDS/TSM by ξ and then solving for ξ leads to

ξ(TSM) = ξ̃

(
gSM

eff,s

g̃SM
eff,s

)1/3(
g̃DS

eff,s

gDS
eff,s

)1/3

. (3.5)

Here, the quantities with a tilde specify a point in time where the
sectors have already been decoupled and ξ, gSM

eff,s, and gDS
eff,s are known,

while the quantities without a tilde are evaluated at TSM. Note that The time evolution of
the temperature ratiothis equation cannot be used immediately to calculate the temperature

ratio ξ at a given temperature TSM since gDS
eff,s and gSM

eff,s have to be
known at TSM. This, however, is not trivial since TDS = ξ TSM would
already had to be known to calculate the effective DOFs of the DS.
Therefore, equation (3.5) is a self-consistent relation and has to be
solved numerically. This can be done for a given temperature TSM by
minimizing the difference of the left- and right-hand side by varying
ξ(TSM). The general result of this discussion is that the temperature of
the DS increases (decreases) when the dark DOFs gDS

eff,s (the DOFs of the
SM gSM

eff,s) decrease.
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Figure 3.1: The temperature evolution of the effective DOFs of the SM (left) and
the total system, including also a DS (right), assuming that the DS

particle species follow their equilibrium distributions for all times.
This dark sector consists of a dark photon with mass mDP =
106 GeV (and three internal DOFs) and a dark Higgs with mass
mDH = 104 GeV (and one internal DOF). The temperature ratio
between the two thermal baths was fixed to ξ = 2 to show that a
DS slightly hotter than the SM bath can already yield interesting
new dynamics. A possible temperature dependence of ξ(TSM) as
it would arise from the reheating of either sector was ignored
here. The data for the effective DOFs of the SM has been taken
from the ancillary material of reference [54].

A final remark should be added concerning the assumption that the
DS species follow an LTE: While for large parts of its evolution the
description using effective DOFs is meaningful, a detailed study of
out-of-equilibrium processes is necessary when there is left only one
massive particle species in the DS without available decay channels.
Given a sufficiently long lifetime, this species will therefore leaveThe breakdown of the

assumption of LTE equilibrium and can no longer be described by the methods presented
in this chapter. The discussion of the mediator’s out-of-equilibrium
decay will be given in section 3.4, while the next chapter will focus on
the evolution of the mediator species before its decay. The description
will start at the point when the other DS species become Boltzmann-
suppressed, freeze out of the LTE and therefore decouple from the
mediator.
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3.3 out-of-equilibrium evolution of the me-
diator species

As described in section 2.2.2.3, in the case of a decay, the Boltzmann
equation for the evolution of the decaying species is a simple ODE

that can be integrated, when the scale factor-time dependence a(t) is
known. Assuming a particular evolution of the scale factor a(t), we Integrating the

Boltzmann equation
is numerically
expensive

can thus obtain ρmed(t) for our dark mediator by further integrating
its distribution function over momentum space as it was presented in
equation (2.16a). This procedure is, however, numerically expensive,
since every point in time requires an individual integration over mo-
mentum space, see equation (4.7) in reference [24]. The aim of this
section will be to derive a simple approximation that we can use to
describe the thermal history of the mediator species since its chemical
decoupling until its decay.

3.3.1 A first approximation for non-relativistic decays

Motivated by the approach presented in reference [13] and extending
it to also allow for an initially relativistic mediator, we will start our
discussion using the approximation

dρmed

dt
= −3 ζ(t) H(t) ρmed(t)− Γ ρmed(t) , (3.6)

where Γ is the decay width of the mediator species, ζ(t) = 4/3 when
the mediator behaves relativistically, and ζ(t) = 1 if it moves non-
relativistically. Moreover, equation (3.2a) can be used to calculate a Approximation,

assuming
non-relativistic
decays

starting condition ρcd
med ≡ ρmed(Tcd

SM) for the ODE specified in equation
(3.6). Here and in the following, the index “cd” denotes the chemical
decoupling of the heavier DS particle species from the mediator. We
introduce the dimensionless time measure θ ≡ Γ t and the normalized
scale factor ā ≡ a/acd. Denoting derivatives with respect to θ by a
prime, the approximation can be written as

ρ′med(θ) = −3 ζ(θ)
ā′

ā
ρmed(θ)− ρmed(θ) . (3.7)

A plot of the resulting ρmed(θ) can be found in Figure 3.2, where we
compare it to the curve obtained by integrating the corresponding
Boltzmann equation. We found that a good overall agreement between
the curves can be achieved, when we perform the transition from
ζ = 4/3 to ζ = 1 at the dimensionless time of θ̃ = 7 θcd

(
Tcd

DS/mmed
)2.

For θ < θ̃, the mediator behaves as a relativistic particle species, whose
energy density scales with ρmed ∝ a−4, while for θ > θ̃ its energy
density scales with ρmed ∝ a−3, since it behaves as non-relativistic
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matter. For θ & 1, the decay of the mediator becomes relevant such
that the energy density decreases exponentially as ρmed a3 ∝ exp(−θ).

10−10 10−8 10−6 10−4 10−2 100

θ = Γ t

100

101

102

103

relativistic non-relativistic decay

ρmed ā3 / GeV4

Boltzmann eq.

Approximation

Figure 3.2: Time evolution of the comoving energy density ρmed ā3 of a dark
Higgs with mass mDH = 1 GeV acting as a mediator between
the DS and the SM particles. The decoupling of other DS species
from the mediator occurs at θcd = 10−10 when Tcd

DS = 10 GeV.
The time parameter, after which the mediator no longer behaves
as a relativistic particle species, therefore amounts to θ̃ = 7 · 10−8.
The solid line refers to the subsequent evolution of ρmed ob-
tained by integrating the Boltzmann equation (2.13), whereas the
dashed line shows the result of the integration of the employed
approximation (3.7). The approximation matches the results of
the Boltzmann equation for times θ sufficiently far away from
θ̃, when the mediator is still relativistic or has already become
non-relativistic. The calculation assumed that the scale factor
behaves as in radiation domination at all times, i. e. a ∝

√
t, such

that ā =
√

θ/θcd and ā′/ā = (2 θ)−1.

Note that the assumed time dependence of ρ′med only describes the
evolution of ρmed, as it is encoded in the Boltzmann equation, well in
the regions that lie sufficiently far from θ ' θ̃. Additionally, it should
be noted that the used approximation only holds well for the case of
non-relativistic decays. If θcd & 1, the mediator’s lifetime is so short,
that it will decay just after having dropped out of equilibrium with
the other DS species. In that case, the mediator would decay while stillValidity of our

approximation being relativistic and we would have to account for the time dilation
between the mediator’s rest frame and the comoving frame of the
expanding FLRW metric, which would result in an exponential decay
with a lifetime effectively prolonged by a time-averaged Lorentz factor
[24]. We will therefore focus on the case where θcd < 1.



3.3 out-of-equilibrium evolution of the mediator species 57

3.3.2 Cannibalism

So far, we ignored self-interactions of the mediator and focused on its
decay to SM particles to describe its time evolution. This description is,
however, incomplete. As was first argued in reference [55], a secluded The mediator

becomes a cannibal
to keep warm

particle species can perform number-changing processes like 3 → 2
or 4→ 2, thereby reducing its comoving number density while con-
serving its entropy. This leads to an unusual relationship between its
energy density and the scale factor until the number-changing pro-
cesses become ineffective. Since in this process the species consumes
itself to keep warm2 for a longer period of time than usually, it is
casually referred to as “cannibalistic” [56].

Self-interactions of the mediator have not been included into the Boltz-
mann equation (2.13) and thus did not lead to any visible effect in
Figure 3.2. We will directly include cannibalism into our approxima-
tion by modifying the function ζ(θ). To do so, we split our description
in two parts: First, there is a period of chemical equilibrium in which
the chemical potential of the mediator vanishes, such that number- Simplification:

µmed = 0 is followed
by Ṅmed = 0

changing processes can be effective. Since the chemical potential even-
tually increases until µmed = mmed is reached, when the mediator gets
non-relativistic, its number density is fixed in a second period that we
will consider separately. A detailed overview of the different processes
and how a phase of cannibalism could be included into the description
of ρmed using a Boltzmann equation can be found in reference [25].

At early times and high temperatures, the mediator’s chemical poten-
tial can be neglected. Therefore, equations (3.2a), and (3.2c) hold,
where x now describes the mediator species. Since the integrals
in these functions only depend on zmed ≡ mmed/TDS, we can ob- When µmed = 0, the

function s̄(ρ̄) exists,
since zmed can be
eliminated

tain a function s̄med(ρ̄med), where s̄med ≡ 2 π2 smed/(gmed T3
DS) and

ρ̄med ≡ 2 π2 ρmed/(gmed T4
DS), by eliminating zmed. In fact, as zmed was

the only quantity that specified the physical properties of the mediator,
the function s̄med(ρ̄med) = s̄(ρ̄) is completely general and can be used
for arbitrary particle species with vanishing chemical potential. Know-
ing that the DS entropy is conserved before the sectors equilibrate
through the mediator’s decay, we can use this function to calculate
the energy density of the mediator species. To do so, note that the
conservation of the comoving mediator entropy smed a3 = const can
be expressed as

d ln smed

dt
=

d ln smed

d ln ρmed

ρ̇med

ρmed
= −3 H(t) , (3.8)

from which it follows that

ρ̇med = −3
d ln ρmed

d ln smed
H(t) ρmed(t) . (3.9)

2 “Warm” in this context denotes a particle species that is neither relativistic nor
non-relativistic, but somewhere in between with m ∼ T.
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Since

d ln ρmed

d ln smed
=

dρmed

dsmed

smed

ρmed
=

dρ̄med

ds̄med

s̄med

ρ̄med
=

d ln ρ̄med

d ln s̄med
=

d ln ρ̄

d ln s̄
,

(3.10)

we can replace the differential in equation (3.9) by the smooth function
d ln ρ̄
d ln s̄ (ρmed). This function is close to 4/3 for large energy densities
ρmed, corresponding to high temperatures and relativistic species,
and approaches 1 for low energy densities ρmed, corresponding to
non-relativistic species. These limits can be understood by compar-Smooth transition to

non-relativistic
behavior described by

d ln ρ̄
d ln s̄

ing equation (3.9) to the mediator’s volume heating rate q̇med ≡
ρ̇med + 3 H [ρmed + Pmed] = 0, which vanishes without heat exchange
between the dark sector and the SM bath (see the comment below
equation (2.18)). Thus, we can identify the function with d ln ρ̄

d ln s̄ (ρmed) =

1 + Pmed
ρmed

. From the evaluation of the relativistic and non-relativistic
limits in section 2.2.2.5 we moreover know that the pressure of a non-
relativistic fluid becomes negligible compared to its energy density
(i. e., Pmed/ρmed � 1) and that for a relativistic fluid Pmed/ρmed ' 1/3
holds. Hence, d ln ρ̄

d ln s̄ can be seen as a function describing the smooth
transition from the relativistic to the non-relativistic behavior of a
particle species, as long as its chemical potential vanishes.

Conversely, when number-changing processes become inefficient, the
chemical potential µmed can no longer be neglected. Thus, the functionWhen Ṅmed = 0, the

previous discussion
holds

s̄med(ρ̄med) cannot be easily obtained by eliminating zmed or replaced
by a generic function ρ̄(s̄). However, when number-changing pro-
cesses are inefficient, the comoving number density of the mediator is
conserved, such that our description from the previous section holds.

To account for a cannibalistic phase in the evolution of the mediator,
we can therefore define3

ζ(θ) =





d ln ρ̄
d ln s̄ (ρmed) for Γnc(θ) ≥ H(θ)

4
3 for Γnc(θ) < H(θ), θ < θ̃

1 for Γnc(θ) < H(θ), θ ≥ θ̃

, (3.11)

which can be used in equation (3.7) instead of the previously used func-
tion ζ(θ) that implicitly assumed Γnc < H for all time parameters θ.Extend previous

approximation by
modifying ζ(θ)

Here, Γnc denotes the rate with which number-changing processes oc-
cur, which can be approximated by the 3→ 2 rate Γ32 ' 〈σ32 v2〉 n2

med

3 The case where θ < θ̃ for Γnc < H should never occur, since in that case the number-
changing processes end while the mediator is still relativistic. While scanning over
the parameter space of the model described in chapter 4, we could not identify a
single case where this condition is fulfilled. This case is therefore noted only for
completeness, here.
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[57]. The thermally averaged cross section of the 3 → 2 process is
given by

〈σ32 v2〉 = 25
√

5 α3
32

3072 π m5
med

+O
(

TDS

mmed

)
(3.12)

for a scalar mediator. If the scalar’s potential is specified as V(φ) =
m2

2 φ2 + κ3
3! φ3 + κ4

4! φ4, the effective 3→ 2 coupling is fixed by [56, 57]

(4 π α32)
3 ≡

(κ3

m

)2
[(κ3

m

)2
+ 3 κ4

]2

. (3.13)

In the case of the dark Higgs described by the Lagrangian density
in equation (2.35), the effective 3→ 2 coupling therefore reads α32 =

9 λ/(21/3 π) ' 2.3 λ due to the effective φ3 term produced in the Assume µmed = 0 as
long as Γ32 > Hphase transition with a coupling κ3/3! = λ v, the quartic coupling

κ4/4! = λ/4 and the dark Higgs mass reading m =
√

2 λ v.

To calculate the rate of number-changing processes Γnc ' Γ32 to define
an ending condition for the cannibalistic phase, the mediator’s number
density has to be known. Since the end of cannibalism is expected to
eventuate when the mediator species is non-relativistic (see footnote
3), this quantity can be calculated approximately using the result from
equation (2.26b), nmed ' ρmed/mmed.

A plot of the resulting time evolution of ρmed ā3 and smed ā3 including
an intermediate phase of cannibalism (with the same set of parameters
used already in Figure 3.2) can be found in Figure 3.3. In the violet
and red shaded areas, Γnc ≥ H holds, such that number-changing
processes can occur, the effect of µmed on the mediator energy and
entropy density is negligible, and ζ(θ) follows the gradual decrease
from 4/3 to 1 as described above. The end of the violet area is marked
by θ = θ̃. Since 3 → 2 processes are efficient, however, the mediator
energy density does not follow the ∝ a−3 scaling of non-relativistic
matter, but rather scales as ρmed ā3 ∝ 1/ ln ā afterwards [25]. The end Exponential decrease

of ρmed a3 during
cannibalism

of the cannibalistic period is fixed by the number-changing processes
becoming ineffective (i. e., Γnc < H), as soon as the mediator number
density nmed sinks below a certain threshold value fixed by the effec-
tive coupling α32, the mediator mass and the Hubble parameter. From
this point in time on, the expected behavior for a non-relativistic decay,
ρmed ∝ a−3 exp(−θ), is restored. As one can see on the right-hand
side of Figure 3.3, entropy is conserved throughout these phases and
only decreases upon the decay of the dark sector. Comparing to Figure
3.2, for which the same physical parameters had been used, shows
that the non-relativistic mediator energy density is lower when an
intermediate phase of cannibalism occurred beforehand. This is due
to a longer period in which the mediator energy density can decrease
due to its redshift. Eventually, this leads to less energy that can be
injected into the SM bath and a less severe reheating of the SM bath, as
will be shown in the next section.
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Figure 3.3: Left: Plot of time evolution of the dark Higgs mediator species
with the same specifications as in Figure 3.2, but with an inter-
mediate phase of cannibalism. In the area shaded in violet (I),
the mediator species is still relativistic, such that ρmed ∝ ā−4,
while in the red area (II), number-changing processes lead to
a decrease of ρmed ā3 ∝ 1/ ln ā with the normalized scale factor
ā. In the area shaded yellow (III), the mediator starts to decay
non-relativistically, i. e. ρmed ā3 ∝ e−θ , and in the blue shaded
area (IV), we have θ > 1, indicating the decay of the mediator
becoming the dominant effect. The effective 3→ 2 coupling was
fixed to α32 = 10−2. Right: The entropy smed ā3 is conserved until
the mediator species decays.

3.4 injecting entropy into the sm

Until now, we always assumed a background evolution of the scale
factor as it would be the case in radiation domination, that is a ∝

√
t.

However, this does not have to be the case when we add a non-
relativistic species to the particle content of the ΛCDM model. In fact,
given a sufficiently long lifetime of the mediator species, the Universe
will inevitably go through a period of early matter domination until it
reenters into the radiation domination described by the ΛCDM model.
Such an intermediate period can have profound impacts on a frozen
out abundance of DM [13] and, as we will show, on the SGWB that
has been produced before. The general reason behind this is that
the secluded mediator will not follow its equilibrium distribution asThe DS can lead to

an early matter
domination

described in equation (2.26a), since it cannot dispose of its energy into
less massive particle particles in the DS and cannot become Boltzmann
suppressed. The mediator can therefore dominate the total energy
density of the Universe and inject a considerable amount of entropy
into the SM bath upon its decay [6, 58]. To describe the interplay
between the scale factor and the evolution of the different sources of
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energy, namely the SM radiation, the decaying DS and possibly also
decoupled DM, we will couple the presented ODE for the evolution of
ρ̇med with the first Friedmann equation and solve the resulting set of
coupled differential equations numerically.

3.4.1 Derivation of the equations governing the entropy injection

We start the derivation by noting that the entropy of the SM in a
comoving volume a3 is given by SSM(t) = 2π2

45 gSM
eff,s(t) T3

SM(t) a3(t) in
accordance with equation (3.4b). From this, we find that the tempera-
ture of the SM bath can be obtained by rearranging

TSM(t) =
(

45
2π2

)1/3
(

SSM(t)
gSM

eff,s(t)

)1/3
1

a(t)
. (3.14)

Using this, the energy density of the SM radiation can be expressed as

ρrad(t) =
π2

30
gSM

eff,ρ(t) T4
SM(t) (3.15)

=
3
4

(
45

2π2

)1/3
(

SSM(t)
gSM

eff,s(t)

)4/3 gSM
eff,ρ(t)

a4(t)
. (3.16)

The increase in the radiation energy density since the chemical de-
coupling of the mediator from the other DS particles can therefore be
quantified by

ρrad(t)
ρcd

rad

=
gSM

eff,ρ(t)

gSM,cd
eff,ρ

(
gSM,cd

eff,s

gSM
eff,s(t)

)4/3(
SSM(t)

Scd
SM

)4/3

ā−4 . (3.17)

Employing the dimensionless time parameter θ = Γ t, the first Fried-

mann equation (2.4a) reads H2 = Γ2
(

ā′
ā

)2
= ρtot

3 m2
Pl

. Neglecting curva-
ture and dark energy, whose effects are not of importance in the early
Universe, the total energy density is given by ρtot = ρmed + ρmat + ρrad.
Here, ρmat describes the influence of an already frozen-out DM density4,
which therefore scales as ρmat = ρcd

mat ā−3. The Friedmann equation
thus reads

ā′(θ) = ā(θ)

√
ρmed(θ) + ρmat(θ) + ρrad(θ)

3 m2
Pl Γ2

=
ā(θ)
θH

√
ρmed(θ)

ρcd
med

+
ρcd

mat

ρcd
med

ρmat(θ)

ρcd
mat

+
ρcd

rad

ρcd
med

ρrad(θ)

ρcd
rad

, (3.18)

4 Since our model investigated in chapter 4 does not include a DM candidate and we are
describing processes in the very early Universe, we will assume that ρmat is negligible
in all of the following numerical calculations. In the analytical work presented in
this chapter, we will however also show the impact of a frozen-out matter density to
facilitate further investigations.
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where the time scale θH ≡
√

3 m2
Pl Γ2/ρcd

med has been introduced in
the last step. We define the first quantity in the square root as r(θ) ≡The first Friedmann

equation, including a
DS injecting entropy

to the SM

ρmed(θ)/ρcd
med, to be able to refer to the mediator energy density as a

dimensionless quantity. To simplify the last two terms in the square
root, we further introduce the constants fmat ≡ ρcd

mat/ρcd
med and frad ≡

ρcd
rad/ρcd

med. Employing equation (3.17), the first Friedmann equation
can be expressed as

ā′ =
ā

θH

√√√√√r +
fmat

ā3 +
frad

ā4

gSM
eff,ρ

gSM,cd
eff,ρ

(
gSM,cd

eff,s

gSM
eff,s

)4/3(
SSM

Scd
SM

)4/3

, (3.19)

where the dependence of ā, r, gSM
eff,ρ, gSM

eff,s and SSM on θ has been omitted
for brevity. Before we get to relating r(θ) with the evolution of ρmed,
as described in section 3.3, we focus on the last term in (3.19) which
describes the amount of entropy that has been injected into the SM

bath since TSM = Tcd
SM, thus increasing the radiation energy density

therein. For coupling a second ODE to the Friedmann equation that
quantifies the entropy injection, observe that

d
dθ



(

SSM(θ)

Scd
SM

)4/3

 =

4
3

(
SSM(θ)

Scd
SM

)1/3
S′SM(θ)

Scd
SM

. (3.20)

From the discussion below equation (2.18) we know that the total heat
is conserved, such that Q′tot = Q′SM + Q′DS = 0. Since Q′DS = q′DS a3,
the derivative of SSM with respect to the time parameter θ thus reads

S′SM(θ) =
Q′SM(θ)

TSM(θ)
= −Q′DS(θ)

TSM(θ)
= −q′DS(θ) a3(θ)

TSM(θ)

= −
(

2 π2

45

)1/3
(

gSM
eff,s(θ)

SSM(θ)

)1/3

q′DS(θ) a4(θ) , (3.21)

where equation (3.14) has been used in the last step. Inserting thisQuantifying the
amount of injected

entropy
expression into equation (3.20) and identifying the leftover numerical
factors with those in equation (3.16) evaluated at θ = θcd, we find

d
dθ



(

SSM

Scd
SM

)4/3

 = −4

3

(
2 π2

45

)1/3
[

gSM
eff,s(

Scd
SM

)4

]1/3

a4 q′DS (3.22)

= −
[

gSM
eff,s(θ)

gSM,cd
eff,s

]1/3 gSM,cd
eff,ρ

gSM
eff,ρ(θ)

q′DS(θ)

ρcd
rad

ā 4(θ) .

(3.23)

Together with the Friedmann equation (3.19), we have a set of coupled
ODEs that describe the evolution of the scale factor and the entropy in
the SM bath. The system is, however, still under-determined since the
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time evolution of the DOFs is not trivial. To close this gap and simplify
the notation, we introduce the functions

γ(θ) ≡
gSM

eff,ρ(θ)

gSM
eff,s(θ)

, G(θ) ≡
gSM

eff,s(θ)

gSM,cd
eff,s

, S(θ) ≡
(

SSM(θ)

Scd
SM

)4/3

(3.24)

and note that the time evolution of the first two functions is described
by

γ′(θ) =
d

dTSM

[
gSM

eff,ρ(TSM)

gSM
eff,s(TSM)

]∣∣∣∣∣
TSM(θ)︸ ︷︷ ︸

≡γ̂(θ)

T′SM = γ̂(θ) T′SM(θ) , (3.25a)

G ′(θ) = d
dTSM

[
gSM

eff,s(TSM)

gSM,cd
eff,s

]∣∣∣∣∣
TSM(θ)︸ ︷︷ ︸

≡Ĝ(θ)

T′SM = Ĝ(θ) T′SM(θ) . (3.25b)

Note that γ̂ and Ĝ can both be calculated from the known temperature
evolution of the effective SM DOFs and the equation (3.14) for a given The evolution of the

SM temperature and
DOFs¸

time θ. In order to use these expressions to close the system of coupled
ODEs, we further need to describe T′SM. Dividing equation (3.14) by
itself evaluated at θ = θcd leaves us with

TSM(θ)

Tcd
SM

=
a

acd

(
SSM

Scd
SM

)1/3( gSM,cd
eff,s

gSM
eff,s

)1/3

=
ā S1/4

G1/3 (3.26)

⇒ d
dθ

TSM(θ)

Tcd
SM

=
3G ā S ′ − 12G ā′ S − 4G ′ ā S

12G4/3 S3/4 ā2 . (3.27)

Note that this expression itself depends on G ′. Inserting the expression
we just obtained into equation (3.25b) and solving for G ′ yields

G ′(θ) = −3
4

Tcd
SM G Ĝ
S3/4 ā

4S ā′ − S ′ ā
Tcd

SM Ĝ S1/4 + 3G4/3 ā
. (3.28)

Since G ′ is now determined, we can also use equation (3.25a) to de-
scribe the time evolution of γ(θ):

γ′(θ) = γ̂ Tcd
SM

3G ā S ′ − 12G ā′ S − 4G ′ ā S
12G4/3 S3/4 ā2 . (3.29)

The last piece to receive a completely determined set of ODEs can be Including the
evolution of the
mediator

obtained by including a specific time evolution of the mediator species,
as it has been discussed in section 3.3. Consider that the volume heat
rate of our dark sector is given by

q′DS(θ) = ρ′med(θ) + 3
ā′(θ)
ā(θ)

ζ(θ) ρmed(θ) = −ρmed(θ) . (3.30)
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The factor q′DS/ρcd
rad in equation (3.23) describing the entropy injection

can therefore be simplified to

q′DS(θ)

ρcd
rad

= −ρmed(θ)

ρcd
rad

= −ρcd
med

ρcd
rad

r(θ) = − r(θ)
frad

, (3.31)

where

r′(θ) = −r(θ)− 3
ā′(θ)
ā(θ)

ζ(θ) r(θ) . (3.32)

The time evolution of the scale factor, the SM entropy, the mediator
energy density and the effective DOFs in the SM bath can therefore be
described by the following set of coupled ODEs:

ā′ =
ā

θH

√
r +

fmat

ā3 +
frad

ā4
γ

γcd

S
G1/3 ,

S ′ = r ā4

frad
G1/3 γcd ,

r′ = −r− 3
ā′

ā
ζ r ,

G ′ = −3
4

Tcd
SM G Ĝ
S3/4 ā

4S ā′ − S ′ ā
Tcd

SM Ĝ S1/4 + 3G4/3 ā
,

γ′ = γ̂ Tcd
SM

3G ā S ′ − 12G ā′ S − 4G ′ ā S
12G4/3 S3/4 ā2 .

(3.33)

The corresponding initial values are fixed by ācd = Scd = rcd = Gcd =

1 and γcd, which will be close to 1 as can be seen in Figure 3.1. A full
interpretation of this set of equations will become possible as soon as
we will consider its solutions. However, a first interpretation of them
is already possible now: The first line connects the evolution of the
normalized scale factor with the matter content of the Universe. TheInterpreting the full

set of coupled ODEs
for the DS evolution,

decay and the
entropy injection

characteristic time scale of its change is fixed by θH, whereas the actual
dynamics comes from the normalized mediator energy density r. If r
remains small, there will be only a minor entropy injection, such that
S will remain close to 1. The immediate interpretation of the latter two
equations, connected to the evolution of gSM

eff,s(θ) and gSM
eff,ρ(θ), is more

involved, but since they will be of negligible importance in most cases,
we do not discuss them further at this point. Only in extreme scenarios
that include the description of temperatures close to or below the QCD

phase transition where the relativistic DOFs in the SM bath decrease
considerably (see Figure 3.1), there can be a visible effect on the overall
time evolution of the energy densities considered. In the model we
will be describing in chapter 4, γ and G will always remain close to 1.

Hence, the only relevant quantities that specify the evolution of ourChoosing a set of
physical input

parameters
DS are the constants fmat, frad, the temperature of the SM bath Tcd

SM
when the mediator decouples from other particle species, the time
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scale θH (fixed by ρcd
med and the mediator decay width Γ), as well as θ̃

and α32, fixing the function ζ(θ) defined in equation (3.11). This choice
of parameters was natural in deriving the set of equations (3.33), but
is not very handy when trying to interpret the effect of changing
the mediator mass, for instance. We therefore re-express these input
quantities for the numerical evaluation of the ODEs in terms of Tcd

SM,
Γ, α32, as well as the mediator mass mmed, the temperature ratio
ξcd ≡ ξ(Tcd

SM) between the two sectors at the chemical decoupling,
the intrinsic mediator degrees of freedom gmed, and the normalized
matter energy density fmat at chemical decoupling. The latter will be
set to zero in the following analysis, since any matter density will be
much smaller than the mediator energy density at the considered early
period of the Universe. Moreover, focusing on the case with gmed = 1,
we are left with five physical parameters describing the evolution of
the mediator species as well as the scale factor and the SM entropy
ratio generated during the decay.

From these five parameters, the initial mediator energy density ρcd
med Five input

parameters: Tcd
SM,

mmed, ξcd, Γ, α32
can be obtained by integrating equation (2.16a) by assuming an LTE5

at chemical decoupling and setting Tcd
DS = ξcd Tcd

SM. The initial SM ra-
diation energy density can be calculated by using equation (3.16),
after having determined gSM,cd

eff,ρ , which can be done using Tcd
SM and an

interpolation of the tabulated DOFs of the SM bath. Using the same tech-
nique, the temperature derivatives in γ̂ and Ĝ can be obtained as well.
Knowing the different sources of energy density6, the age of the Uni-
verse at chemical decoupling tcd can be computed by integrating the
first Friedmann equation (2.4a) [59]. Then, both the time parameters,

that were defined as θ̃ ≡ 7 θcd
(
Tcd

DS/mmed
)2 and θH ≡

√
3 m2

Pl Γ2/ρcd
med,

and the normalized initial energy density frad ≡ ρcd
rad/ρcd

med can be de-
termined.

3.4.2 Numerical solution of the equations governing the entropy
injection

Figure 3.4 shows an overview of the evolution of the energy densities
ρmed and ρrad, the normalized scale factor ā, the temperature of the An overview of the

six phases shown in
Figure 3.4

SM bath TSM, and the amount of injected entropy SSM/Scd
SM into the

SM bath as functions of the dimensionless time parameter θ = Γ t. The
five physical input parameters used for solving the system of coupled
ODEs numerically are Tcd

SM = 100 GeV, mmed = 50 GeV, Γ = 10−25 GeV

5 This assumption is well-founded, since the mediator initially retains a thermal
distribution in the process of chemical decoupling as was discussed in reference
[24].

6 There exists some ambiguity in counting the mediator energy density as matter or
radiation during this integration when mmed/Tcd

DS = O(1). We chose to count the
mediator species as radiation if mmed/Tcd

DS < 1.
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Figure 3.4: Starting from the top left (clockwise): Time evolution of the comov-
ing energy densities ρ ā3 of the mediator species and the SM

radiation, the normalized scale factor ā, the entropy SSM/Scd
SM

of the SM bath, as well as its temperature TSM. The evolution
can be obtained by numerically solving the set of ODEs defined
in equation (3.33) and can be ordered into the different phases,
which are referred to with roman numerals in the plot: Relativis-
tic mediator (I), cannibalism (II), non-relativistic mediator (III),
early matter domination (IV), entropy injection (V), and decay
(VI). A detailed description of the individual phases and the
physical parameters used to generate these plots is given in the
text.

(corresponding to a mediator lifetime of about 7 s), ξcd = 1, and
α32 = 2 · 10−3 (corresponding to the quartic coupling λ ' 10−3 within
the Lagrangian density defined in equation (2.35)). To obtain all the
possible details from this specific case, let us go through the individual
phases marked with roman numerals and background areas shaded
in diverse colors.

We start to integrate the equations (3.33) from the point in time onPhase I

where TSM = 100 GeV, so when top and anti-top quarks already
annihilated and the EWPT just happened. At that point, the Universe
is dominated by the SM radiation, which is why the scale factor has
the proportionality a ∝

√
t as expected by the ΛCDM model. Moreover,

the temperature drops due to the expansion of the Universe with
TSM ∝ 1/a. Since ξcd = 1, the temperature of the DS coincides with
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the temperature of the SM bath, when the heavier DS particle species
decouple from the mediator, i. e. Tcd

DS = Tcd
SM. Because the mass of

the mediator is only a factor of 2 larger than Tcd
DS, it is almost non-

relativistic at chemical decoupling, such that the mediator quickly
enters in the phase II.

This phase shows a smooth transition from the relativistic ρmed ∝ ā−4 Phase II

behavior to the non-relativistic ρmed ∝ ā−3 behavior, as dictated by
the conservation of entropy, when number-changing processes can
occur in the DS. We have checked for a few examples that this phase
indeed shows the expected scale factor dependence of a cannibalistic
era by fitting the law ρmed ā3 ∝ 1/ ln ā to the curve. Without this phase
of cannibalism, the mediator energy density would be considerably
larger and phase III would have started immediately after phase I.

At some point, the mediator does not undergo further number-changing Phase III

processes, which means that its cannibalistic era ends. From now on,
its energy density follows the expected decay law of a non-relativistic
species ρmed a3 ∝ exp (−θ). Since the energy density of the SM radia-
tion however still scales with ρrad ∝ a−4, the mediator will inevitably
dominate the energy density of the Universe, which also marks the
end of phase III and the onset of phase IV.

Now, a few processes happen simultaneously: First, since the mediator Phase IV

density scales as a−3 and dominates the Universe’s energy content,
we find ourselves in a phase of early matter domination. This means
that the scale factor no longer scales as a ∝ t1/2, but rather with
a ∝ t2/3. Therefore, we can see that ā starts to deviate from its initial
time evolution as marked in light violet in the upper right plot. Con-
sequently, since the scale factor increases faster, there is a (slightly
visible) change in the rate with which ρrad ā3 decreases. For the same
reason, the temperature of the SM bath falls off slightly more quickly
(TSM ∝ t−2/3) than predicted in the ΛCDM model (TSM ∝ t−1/2). This
change in the decrease stems from the fact that the Universe expands
more quickly (as described by ā) rather than the other factors S1/4 and
G1/3 in equation (3.26). This changes when we transition from phase
IV to phase V.

In phase V, the mediator decay and the injection of entropy into the Phase V

SM bath become relevant. Therefore, we can see a change in the curve
SSM/Scd

SM for the first time when θ ' 10−2. Now, the energy density of
the mediator slowly starts to decrease as a result of its decay, reheating
the SM bath due to the factor S1/4 in equation (3.26). Note, however,
that there is no literal “reheating” but rather a decrease of the SM

temperature that is less than TSM ∝ a−1. As shown in reference [13],
the scaling in this period reads TSM ∝ a−3/8. With the decrease of
mediator energy density, the radiation energy density increases, until
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it dominates over the leftover mediator again. Therefore, the initial
radiation domination is restored.

The final phase VI describes the ongoing decay of the mediator afterPhase VI

the end of the early matter domination. At θ ∼ 1, the two energy den-
sities considered here are again equal and the temperature has almost
reached its ΛCDM evolution, as described by the curve in light red.
This curve was calculated using equation (3.26), but therein setting
a ∝
√

t (as in radiation domination) and S = 1 (for no entropy injec-
tion). Now, the temperature of the SM bath lies below the MeV scale
such that the gSM

eff,s in total decreased by one order of magnitude. Since
TSM nevertheless scales only with G−1/3, the effect of the annihilation
of SM particles species and particularly the QCD phase transition could
not be observed visually. Only a closer look at the curves for TSM and
ρrad would allow us to tell, that due to the decrease of gSM

eff,s, the SM

bath reheats slightly for every annihilating particle species therein.
Since, in either case, the decaying mediator cannot inject more entropy
into the SM bath, at some point the curve for SSM/Scd

SM saturates and
the radiation energy density decreases because of the expansion of the
Universe in radiation domination, as it was the case initially.

3.4.3 The dilution of dark matter and gravitational waves

The out-of-equilibrium decay of the mediator can result in a consid-
erable injection of entropy and energy into the SM bath, as we have
observed in Figure 3.4, where the comoving entropy of the SM bath
is more than 100 times higher after the DS decay than before. While
the thermal evolution as described in the ΛCDM model will take over
after that, there is nevertheless one main consequence of the entropy
injection, i. e. the dilution of frozen-out abundances. As the comov-The injected entropy

is diluting DM and
the SGWB

ing entropy density sSM a3 is not conserved during the decay, also a
comoving DM yield Y ≡ nDM/sSM will not be conserved. In fact, the
yield of a DM freeze-out calculation would be diluted by the factor
SFO

SM/S0
SM [13], where the index 0 denotes today and FO denotes the

point in time when the freeze-out happened.

We will transfer this dilution to the generated SGWB, which can be
interpreted as a form of dark radiation. In that case, the relevant
quantity to quantify the dilution is the scale factor ratio between its
nucleation and today. Using equation (3.14), we obtain

an

a0
=

(
Sn

SM

S0
SM

)1/3( gSM,0
eff,s

gSM,n
eff,s

)1/3
T0

SM
Tn

SM
, (3.34)

where the indices “0” and “n” denote today and the respective quantityIntroducing the
dilution factor DSM at the nucleation of bubbles in the FOPT. Assuming that the comoving
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SM entropy is separately conserved before and after the mediator
decay, we can identify the first factor as D−1/3

SM with

DSM ≡
SSM(θ � 1)

Scd
SM

. (3.35)

Apart from a mere redshift due to the decrease in TSM since the gener-
ation of the SGWB and an O(1) factor due to the decrease in DOFs, we
thereby see that the scale factor ratio also decreases due to DSM ≥ 1.
The frequency spectrum of an SGWB generated before the decay of
the mediator will therefore be lower than expected without the dilu-
tion effect. Vice versa, if we observe an SGWB with a given frequency
spectrum, its spectrum at generation must have been shifted towards
higher frequencies than one would expect without an additional dilu-
tion in between:

a0

an
f = D1/3

SM

(
gSM,n

eff,s

gSM,0
eff,s

)1/3
Tn

SM

T0
SM

f . (3.36)

This expression will be used to calculate the red-shifted frequency in
equation (2.95). The redshift of the signal’s amplitude also undergoes
a redshift, which we denoted byR in equation (2.96). Since the Hubble
parameter is fixed by H2(T) = π2

90 gtot
eff,ρ(T)

T4

m2
Pl

, we obtain

R =
1

D4/3
SM

(
gSM,0

eff,s

gSM,n
eff,s

)4/3(
T0

SM
Tnuc

SM

)4 (
Hn

H0

)2

=
1

D4/3
SM

(
gSM,0

eff,s

gSM,n
eff,s

)4/3
π2 gtot,n

eff,ρ

90

(
T0

SM

)4

m2
Pl H2

0
. (3.37)

Since we wish to condense the effect of the temperature ratio ξ into Introducing the
dilution factor Done quantity, we further introduce

D ≡
gSM,n

eff,s

gtot,n
eff,s

DSM , (3.38)

which saturates when increasing ξcd, as shown in reference [13]. Using
this quantity and setting T0

SM = 2.35 · 10−13 GeV, the redshift of the
SGWB amplitude can be expressed as

R h2 ' 2.473 · 10−5

D4/3

(
gSM,0

eff,s

gtot,n
eff,s

)4/3 gtot,n
eff,ρ

2
, (3.39)

which corresponds to the expression given in reference [26], but with
an additional factor of D−4/3, allowing also for a dilution of the signal.

Note that the dependences of
(

gtot,n
eff,s

)−4/3
and gtot,n

eff,ρ on ξn now cancel
in the limit of high temperature ratios. The effect of the temperature
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ratio between the DS and the SM bath during the generation of the
SGWB is therefore (almost) isolated in D.

We can now describe the effect of the mediator decay on the SGWB

by investigating the dependence of the dilution factor DSM (or analo-
gously, D) on the input parameters defined at the end of subsection
3.4.1. To get a feeling for the impact of these different quantities that
specify the DS and its decay, a scan over different planes in the re-
sulting parameter space is shown in Figure 3.5. The left column ofDependence of DSM

and Tfin
SM on the five

independent DS
parameters

plots shows the dependence of DSM on the temperature of the SM

bath at decoupling Tcd
SM, the mediator mass mmed, the temperature

ratio at chemical decoupling ξcd, the effective 3→ 2 coupling α32 and
the mediator decay width Γ, whereas the right column specifies the
temperature Tfin

SM ≡ TSM(θ = 5), at which the mediator has decayed.
The mediator decay width ranges from 10−30 GeV to 10−15 GeV in the
shared horizontal axis among all plots, corresponding to mediator
lifetimes between about one week and a few nanoseconds. This broad
range of decay widths is of course constrained and should rather be
interpreted as an overview of the possible solutions of the equations
(3.33), than as an attempt to build a feasible model for a DS.

The most striking feature is the independence of the SM temperature
after the decay on all the parameters except for Γ. This reflects the
result that we already saw in Figure 3.4, when TSM approached the
prediction of the ΛCDM curve. Given that the decay of the dark sectorThe SM temperature

after the decay is
fixed by Γ

should be finished before the QCD phase transition, we have to focus
on mediator lifetimes below O(1 s). The only influence of the four
parameters next to Γ that determine Tfin

SM is thus on the limits, in which
our underlying assumptions are fulfilled. Explicitly, only the regions
for which θcd < 1 are shown in the plots, since for θcd ≥ 1 (white
background area) the lifetime of the mediator is so short that it is
already decaying at chemical decoupling.

The scan over the initial temperature (in the first row) shows that the
dilution factor DSM remains close to 1 in large parts of the parameter
space. There can only be a sizable entropy injection, when the me-
diator lifetime is large enough. Moreover, this can only be the case
when the mediator is not already Boltzmann suppressed7 at chemicalBoltzmann

suppression for
Tcd

DS . mmed
decoupling. In this plot, the mediator mass was set to mmed = 1 GeV
and ξcd = 1, such that the Boltzmann suppression occurs for tempera-
tures Tcd

SM . 1 GeV. For temperatures Tcd
SM & 1 GeV, the dilution factor

almost saturates since the physical situation at the mediator decay
does not change. The slight decrease in DSM when going to higher

7 Note that a Boltzmann suppression of the mediator at chemical decoupling is not
possible in our physical scenario: If the mediator would be Boltzmann suppressed
at chemical decoupling, it could not be the mediator, as it would not be the single
lightest DS particle species, which is in conflict with the assumptions that we made at
the beginning of this chapter.
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Figure 3.5: Scan over the five DS parameters which determine the dilution
factor DSM and the final temperatures Tfin

SM ≡ TSM(θ = 5), when
the decay of the mediator has happened. In the first row, mmed =
1 GeV, ξcd = 1, and α32 = 10−4 are fixed. In the second row, the
same parameters as in the first row are used, except that Tcd

SM =

10 GeV is held constant. In the third row, mmed = Tcd
SM = 1 GeV

and α32 = 10−4 are chosen to be constant, whereas in the forth
row ξcd = 1, mmed = 1 GeV and Tcd

SM = 10 GeV. In the white
areas of the plots, θcd > 1, indicating the immediate decay of the
mediator at chemical decoupling. A detailed description of the
different effects explaining the shown dependences can be found
in the text.
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Tcd
SM can be explained by the initially greater number of effective DOFs

in the SM radiation, decreasing the ratio between the initial mediator
and radiation energy density.

The effect of the Boltzmann suppression can also be seen in the scan
over the mediator mass (in the second row). Here, for masses above
10 GeV the dilution factor decreases quickly due to the Boltzmann
suppression of the initial mediator energy density, since Tcd

SM = 10 GeV
and ξcd = 1. Below this mass, the dilution factor decreases as well, this
time however due to a weakened effect of the early matter domination:Smaller mmed lead to

weaker early matter
dominations

For a smaller mass, the mediator has a longer period of relativistic
and cannibalistic evolution, such that the duration of the early matter
domination and thus also the deviation from the scale factor evolution
in radiation domination becomes smaller, eventually resulting in a
decreased dilution factor.

The plot in the third row shows the effect of varying the DS tempera-
ture with respect to the SM temperature at chemical decoupling. Since
an increase in ξcd also results in an increase in the energy and en-
tropy stored in the DS, the later on injected entropy scales accordingly.A hotter DS injects

more entropy Therefore DSM increases when ξcd is larger. Interestingly, there exists
a threshold mediator decay width above which DSM depends no more
on Γ. This, however, is a relic of our assumption that the mediator
decays while being non-relativistic. In fact, in the regions in which the
dependence on Γ drops, we identified that θ̃ > 1, indicating that the
mediator becomes non-relativistic only after θ = 1, which is in contrast
to the used assumptions of non-relativistic decays. Furthermore, in this
case, inverse decays from SM particles to the DS will become important,
which could moreover tamper with our most fundamental assumption
that the coupling is sufficiently small to guarantee separate thermal
baths. For these two reasons, we cannot trust our predictions for non-
relativistic decays in this region of parameter space. Therefore, we will
have to separately assure in our following analysis of chapter 4 that
the mediator species decays as a cold relic.

The general effect of the cannibalistic era can be observed in the left
plot in the fourth row, describing the dependence of DSM on α32.
A large effective 3 → 2 coupling means that the number-changing
processes become inefficient later than for small α32. Since duringWith cannibalism,

the early matter
domination is shorter

and less severe

a cannibalistic era the comoving mediator energy density ρmed a3

decreases, the Universe will thus enter into a possible phase of early
matter domination only relatively late, if α32 is large. The saturation
of DSM towards low α32 is caused by the immediate switch from
ζ(θ) = 4/3 to ζ(θ) = 1, when no number-changing processes can take
place when θ = θ̃, as Γ32 < H already is fulfilled by the smallness of
α32.
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3.5 parameterizing sgwbs from hot dark sec-
tors

The description of the dynamics of the entropy injection is now fin-
ished. We have seen that the out-of-equilibrium decay of the mediator
species can lead to a sizable entropy injection, leading to the dilution
of SGWBs. Since the DS in our investigated model will itself generate the What is the influence

of ξ on the SGWB?SGWB through an FOPT of the dark Higgs, we can connect the already
introduced quantities shown in Figure 3.5, especially the temperature
ratio, to the quantities determining the GW spectrum.

Including the DOFs going into the calculation of the redshift R h2

and an/a0, we find that ten parameters are necessary to calculate the
spectrum of the SGWB produced in an FOPT: The transition strength Out of the 10 SGWB

parameters, α, β/H,
Tn

SM, and D are
most important

α, the critical transition strength α∞ for runaway bubbles, the inverse
time scale β/H, the dilution factor D, the nucleation temperature Tn

SM,
the DOFs gtot,n

eff,ρ , gtot,n
eff,s , and gSM,0

eff,s , the percentage of bulk motion energy
going into turbulence εturb, as well as the bubble wall velocity vw. As
discussed in chapter 2.5.4, we will optimistically set εturb = 10 % and
vw = 1 in accordance with the work by Breitbach et al. [12]. Since our
investigated model further does not include additional DOFs to the SM

that are still abundant today, we can set gSM,0
eff,s = 3.93 [54]. Further, a

detailed description of the calculation of the DOFs gtot,n
eff,ρ and gtot,n

eff,s , and
the dilution factor D has already been presented in the sections 3.2
and 3.4.

Due to the previous discussion of DSs we are now well-equipped to
extend the superficial description of the parameters α, α∞, β/H, and
Tn

SM given in chapter 2.5.4. First of all, it should be noted that the
nucleation condition presented in equation (2.63) remained agnostic
about the precise notion of the temperature Tn. We will follow the ap-
proach described in reference [12] and use the DS temperatures in the
nucleation criterion, neglecting logarithmic corrections arising from
the difference between Tn

DS and Tn
SM. Once the nucleation temperature ξn translates Tn

SM
and Tn

DSTn
DS is determined, we will convert it to an SM temperature by dividing

it by ξn. To further spare the calculation of the time evolution of ξ(TSM)

from some fixed point before the phase transition until TSM = Tn
SM, we

will immediately use ξn as an input parameter when scanning over
different realizations of the model presented in chapter 4.

Having fixed the nucleation temperature of the DS phase transition,
we can determine the inverse timescale β/H following equation (2.92), β/H does not

depend on ξnwhere we again set Tn = Tn
DS. Note that β/H is independent of the

temperature ratio ξn, such that one could use Tn
SM as well to come to

the same inverse timescale, since ξn cancels [12].
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Since the radiation energy density at the nucleation is given by
ρn

rad = π2

30 gtot,n
eff,ρ (Tn

SM)4 and gtot,n
eff,ρ = gSM,n

eff,ρ + gDS,n
eff,ρ ξ4

n, there will be a
considerable influence of ξn on the transition strength α = ε/ρn

rad. The
latent heat ε can be computed using equation (2.90) and is indepen-
dent of the temperature ratio between the two sectors. By replacing
Tn

SM with ξ−1
n Tn

DS, we find that

ρn
rad =

π2

30

(
gSM,n

eff,ρ

ξ4
n

+ gDS,n
eff,ρ

)
(Tn

DS)
4 , (3.40)

from which we follow that for small ξn and few effective DOFs in theα ∝ ξ4
n for small ξn

and few DOFs in the
DS

DS, α ∝ ξ4
n holds approximately [12]. This is the origin of the strong

enhancement of SGWB signals from hot DSs.

Following the same reasoning, the critical phase transition strength
must also scale with ξ4

n. Comparing to equation (2.94) yields the
expression

α∞ ≡
(Tn

DS)
2

ρn
rad

[
∑

b

nb

24
∆m2

b(φ) + ∑
f

n f

48
∆m2

f (φ)

]
, (3.41)

which indeed approximately grows with ξ4
n for small ξn, when Tn

DS is
kept constant.

In Figure 3.6, an overview of the different effects of the quantities
α, β/H, Tn

SM and D on the resulting GW spectrum can be found. To
be able to investigate their individual effects, a benchmark point has
been fixed, that is representative for the kind of signals of the model
presented in chapter 4 and lies just below the region observable by
LISA (see Figure 2.12). Explicitly, α = 10−2, α∞ = 10−3, β/H = 102,
Tn

SM and D = 1 have been fixed, whereas the total effective DOFs at
nucleation have been set to gtot,n

eff, ρ = gtot,s
eff, s = 100.

The overall effect of changing one of the four parameters considered is
the shift of the broken power law spectrum towards other frequencies
or amplitudes. Increasing α, corresponding to the investigation of a
stronger phase transition, leads to stronger signals, as is intuitively
clear. For larger α ∼ O(1− 10), one can however observe that theα increases the

signal strength signal strength saturates due to the term ∝ α/(1 + α) in equation
(2.89). Increasing the temperature ratio ξ between the DS and the SM

bath will therefore lead to stronger signal strengths, until a saturation
for very strong phase transitions will be achieved.

The effect of increasing β/H is more subtle: Larger values indicate
faster phase transitions and smaller bubbles sizes. This is because in aSlow transitions, i. e.

low β/H, are
favored for strong

signals

fast phase transition many bubbles form at the same time, with the
result that they will collide while still being small [12]. The collision
of these smaller bubbles creates smaller anisotropies in size and am-
plitude, such that the spectrum shifts to higher frequencies and the
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Figure 3.6: Plots of the SGWB spectrum generated by an FOPT, showing the
individual effects of increasing the transition strength α, the
inverse time scale β/H, the temperature Tn

SM of the SM bath at
the nucleation of bubbles, and the dilution factor D, introduced
in equation (3.38). The transition strength meets the condition
α � α∞. Thus, the phase transition produces runaway bubbles
and the major part of the latent heat released is used to accelerate
the bubble wall, such that the contribution from bubble collisions
dominate over the sound wave and MHD production of GWs. For
weaker transitions α < α∞, the sound waves will dominate over
the scalar field contribution, thus giving a different power law
spectrum. The effects presented in this figure will remain the
same also in that case, even though the spectrum might obtain
additional features, then. The parameters used for the benchmark
point, depicted as a solid blue line in all plots, are given in the
text.
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overall signal strength becomes weaker. For that reason, low values of
β/H are favored for observable signals.

The only effect of increasing the nucleation temperature Tn
SM (next to

comparably small changes in the DOFs of the SM bath and correspond-
ingly small consequences for quantities depending on these) is the
shift of the spectrum towards higher frequencies. This is not trivially
clear, since the spectrum should naively just shift towards lower fre-The peak frequency

grows with Tn
SM quencies due to the increased redshift. Since the Hubble parameter at

nucleation scales with (Tn
SM)2, this effect, is however overcompensated

for β/H = const and the relation fp ∝ Tn
SM is recovered, where fp

denotes the peak frequency [49].

Increasing the dilution factor finally yields the redshift to lower fre-
quencies (∝ D−1/3) and lower amplitudes (∝ D−4/3), as discussed in
section 3.4.3. As we have seen, DSM increases with the temperature
ratio ξcd. We will see that D will also increase for higher temperatureD dilutes the signal

by shifting to lower
strengths and

frequencies

ratios, such that there will be a series of competing effects: The increase
in the transition strength, the shift in the SM nucleation temperature,
and, ultimately, the increased dilution due to the increased amount of
entropy injected into the SM bath.

So far we tried to treat the discussion of decaying hot DSs featuring
an FOPT as model-independent as possible. The following chapter
will finally become more concrete and investigate a given particle
physics model and the possibility whether it can lead to an observable
SGWB. This will answer also the question which of the effects on the
GW spectrum will dominate when the temperature ratio between the
sectors is increased.
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We are now equipped with all the necessary tools to investigate a
particular model of a DS, its possible phase transitions, the resulting
SGWB, the decay of a mediator species, as well as the consequent
entropy injection and dilution of the GW signal. In section 4.1, we will
provide a detailed description of the model that we study in the rest
of this chapter. We will find that the parameter space of our DS model
can be expressed through five independent, physical quantities. A The structure of this

chapterstudy of the effects occurring in the different regions of the available
parameter space will be presented in section 4.2. Before we come to
a short summary of the investigated model in section 4.4, we will
analyze the expected SNRs for two benchmark points that can tell us
about the capability of LISA and the ET to test our model in section 4.3.

4.1 definition of the model

In the following, we will consider an additional gauge group U(1)D to
the SM. Therein, the index “D” implies sufficiently weak interactions of
the DS particles with those of the SM, such that the newly introduced
particle species can be referred to as being “dark”. To achieve this, we
assume that none of the SM particles are charged under the dark gauge
group. The gauge boson of this new gauge group is a “dark photon” Adding a dark

Higgsed U(1)D to
the SM

that mediates between particle species that are charged under the dark
gauge symmetry. The idea for this model was first presented in 1985,
predicting a kinetic mixing with the SM photon leading to a shift in
the electromagnetic charges [60]. Moreover, we introduce a complex
scalar field Φ = (φ + i ϕ) /

√
2, which we take to be a singlet under

the SM gauge group and whose real part will obtain a non-zero VEV

during an FOPT, in which φ itself and the dark photon will become
massive. The real part φ of the dark Higgs field Φ will be referred to
as the “dark Higgs (boson)”. The DS can decay into SM particles as a
result of the kinetic mixing of the dark photon with the SM photon as
well as the mass mixing between the dark Higgs and the SM Higgs
boson.

77
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To obtain a gauge invariant Lagrangian, the covariant derivative acting
on Φ must also include the dark photon field B′µ which comes with a
gauge coupling g:

Dµ Φ =
(

∂µ + i g B′µ
)

Φ . (4.1)

The dark photon field strength tensor can be expressed as B′µν =

∂µ B′ν − ∂ν B′µ. The corresponding quantities for the other U(1) gauge
boson with which the dark photon can mix are denoted in the same
way without a prime1. The relevant terms in the Lagrangian thus read
[12]

L ⊃
∣∣Dµ Φ

∣∣2 +
∣∣Dµ H

∣∣2 − 1
4

B′µν B′µν − ε

2
B′µν Bµν −V(S, H) ,

(4.2)

where H is the SM Higgs field and ε is the kinetic mixing parameter of
the dark photon to the U(1)Y gauge boson. The most general tree-levelThe tree-level

potential potential for Φ and H, being renormalizable and invariant under the
model’s symmetries, is given by [61]

Vtree(S, H) = −µ2 S∗ S + λ (S∗ S)2

− µ2
H H† H + λH (H† H)2 + λp (S∗ S) (H† H) ,

(4.3)

where λ (λH) denotes the dark (SM) Higgs quartic coupling and µ (µH)
sets a corresponding mass scale. The coupling λp connects the two
sectors and leads to a mass mixing of the two Higgs bosons and must
thus be tiny for the sectors to be initially thermally decoupled [26].
Denoting the real part of the Higgs field H by h, which acquires a VEVThe mass spectrum

in the EWPT, the field-dependent masses of the two physical Higgs
bosons read

m2
(h, φ)(h, φ) =

(
−µ2

H + 3 λH h2 +
λp
2 φ2 λp h φ

λp h φ −µ2 + 3 λ φ2 +
λp
2 h2

)
.

(4.4)

Using this matrix, the respective mass terms in the tree-level potential
can be written as Vtree ⊃ 1

2 vT m2
(h, φ) v with v = (h, φ). Parameterizing

the SM Higgs doublet as

H =


 G+

1√
2

(
h + i G0)


 , (4.5)

1 We assume here that the U(1) with which our U(1)D mixes is the gauge group
of hypercharge U(1)Y . After the EWPT, the corresponding gauge group would be
the gauge group of electromagnetism U(1)EM. The mathematical description of
that would be equivalent, but the phenomenology of dark photon decays trough
mixing would change [23]. Since we will assume in the following that the mixing
parameter ε is sufficiently small such that only the dark Higgs can efficiently mediate
between the two sectors, the following statements about the negligible mixing with the
hypercharge gauge boson B will also hold for the gauge boson of electromagnetism.
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the masses of the Goldstone modes G0 and G+ of the SM Higgs field
and ϕ of the dark Higgs field can be calculated as

m2
G0,G+(h, φ) = −µ2

H + λH h2 +
λp

2
φ2 , (4.6a)

m2
ϕ(h, φ) = −µ2 + λ φ2 +

λp

2
h2 . (4.6b)

The mixing between the hypercharge gauge bosons W3 and B and the
dark photon field B′ gives rise to the SM massive W± and Z bosons,
the massless photon A as well as the massive dark photon A′. The
mass of the latter reads

mA′(φ) = g φ (4.7)

in the limit of small ε [62]. We will work in the limit in which both ε

and λp are sufficiently small, such that we can ignore their individual The limit of small
mixing parameters ε

and λp
effects during the phase transition and such that we can assume
that the DS forms a distinct thermal bath. In that limit, the tree-level
relations µ2 = λ v2 and mDH ≡ mφ =

√
2 λ v hold, where v denotes

the VEV of the real part φ of the dark Higgs field, and the mass of the
Goldstone boson ϕ vanishes. We will therefore be able to compute the
dark Higgs potential using the three quantities λ, g and v.

In Figure 4.1, the effective potential of the model defined above is
depicted for a series of increasing temperatures to show the individual
effects of the different contributions to it. To calculate the daisy poten-
tial defined in equation (2.55c) for this example and the subsequent
analysis, the following Debye masses are used [12]:

ΠΦ(TDS) =

(
λ

3
+

g2

4

)
T2

DS , (4.8a)

ΠL
A′(TDS) =

g2

3
T2

DS. (4.8b)

For TDS = 0, the tree-level potential Vtree gets corrections from VCW +

Vct, that increase the energy density of the potential minimum at φ = v, Contributions to the
effective potential of
the dark Higgs

which has been set to 1 TeV, but do not shift its position due to the
imposed conditions on the counterterms given in the equations (2.57a)
and (2.57b). Only for TDS > 0, the additional potentials VT + Vdaisy
contribute. For the critical temperature TDS = Tc

DS ' 0.2 TeV, the
thermal corrections already dominate over the contributions from the
Coleman-Weinberg potential and its counterterms. The daisy potential
Vdaisy therein leads to a small shift towards lower energy densities
due to its relative sign with respect to VT. The thermal corrections in
total give rise to a barrier, through which φ has to tunnel to reach the
true vacuum state for lower temperatures, thus rendering it an FOPT.
For higher temperatures, the thermal corrections completely dominate
over the contributions for TDS = 0, enforcing the field to remain in its
symmetric φ = 0 configuration as has been argued in chapter 2.4.
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Figure 4.1: Plot of the effective 1-loop potential and its contributions from
the tree-level potential Vtree, the Coleman-Weinberg potential and
its counterterm potential VCW + Vct, as well as the temperature-
dependent potentials VT +Vdaisy for three different temperatures.
The effective potential energy for φ = 0 was subtracted from
V1−loop

eff for all temperatures. The quartic coupling was set to
λ = 2 · 10−3, the gauge coupling was chosen as g = 0.5, and
the tree level VEV has been fixed to v = 1 TeV. For TDS = 0, the
only contributions to V1−loop

eff come from VCW and Vct, which do
not change the position of the true vacuum in field space, but
increase its corresponding energy density due to the additional
vacuum energy by self-interactions. At the critical temperature
Tc

DS, the other potential terms contribute to a potential barrier,
such that the minimum degenerates. At higher temperatures, the
thermal contributions dominate and restore the symmetry for
φ = 0.
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To be able to apply our discussion from the last chapter, where only
one particle species was allowed to decay and to act as a mediator Considering

mDP > mDH for
strong FOPTs and a
dark Higgs mediator

between the two sectors, we will assume that the dark photon does not
contribute to the DS decays and that it is more massive than the dark
Higgs boson. This will lead to a Boltzmann suppression of the dark
photons and thus to the chemical decoupling of the two DS species at
Tcd

DS ' mDP, where mDP denotes the dark photon mass2. Considering
the tree-level relation for mDH and comparing to the dark photon
mass given in equation (4.7), the condition on the mass hierarchy is
equivalent to g >

√
2 λ, which allows for strong phase transitions, as

we will see in the following section.

Only ultimately, during the decay of the dark Higgs, the effect of the
mixing with SM particles will become important. The mass mixing
can, however, only happen after the EWPT, during which the SM Higgs
boson becomes massive. Before that, this decay channel is not available.
However, including dimension-five operators in an effective field
theory scenario of our DS would already allow for a decay of the
dark Higgs boson to hypercharge bosons or gluons. We will remain
agnostic about the specific decay channels and will therefore not
further quantify the decay width Γ of the dark Higgs. Moreover, in the Why we choose Γ as

a model parametercase of an effective field theory, there would be additional DOFs in the
DS, whose freeze-out would alter the evolution of the temperature ratio
between the sectors. We will therefore use the temperature ratio ξn at
the nucleation of the FOPT as a fixed point for the following analysis
and derive the needed temperature ratios at later times by solving
equation (3.5) numerically. In any case, the introduction of a specific
description of the dependence of Γ on masses and couplings would
not reduce the number of open parameters. We will therefore perform
the analysis in a rather model-independent fashion by sticking to Γ
in the scans presented in the following sections. We will also remain
agnostic about possible UV-complete explanations that lead to the
specific values of ξn that we will use. Our study will therefore focus
on the competing effect of the increase in α and D when increasing
the temperature ratio between the DSs and the SM bath, rather than
specifics of the dark photon model.

Hence, we can determine the model completely by fixing the dark
Higgs quartic coupling λ, the U(1)D gauge coupling g, the VEV v, the
dark Higgs decay width Γ and the temperature ratio ξn between the
DS and the SM bath at the nucleation of bubbles during the FOPT. From Model parameters: λ,

g, v, ξn, and Γthese quantities, the mass spectrum of the relevant particles and the
effective potential will be calculated. Then, the phase structure and the

2 We have checked explicitly that this assumption presents a conservative estimate
on the expected SNRs. For Tcd

DS = C mDP with 0.1 < C < 1, the chemical decoupling
occurs later, such that the dilution factors D will become smaller and the SGWB will
be less diluted and thus more easily observable.
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possible phase transitions encoded within the effective potential will
be computed. In the case of a possible FOPT, when a thermally induced
barrier exists at a critical temperature Tc

DS, the nucleation criterion in
equation (2.63) is used to calculate a nucleation temperature Tn

DS < Tc
DS.

To do so, it is necessary to solve a series of ODEs describing the
bubble profiles and the corresponding bounce actions, see chapter
2.4. By calculating the derivative of the bounce action around the
nucleation temperature, the inverse time scale β/H of the transition
can be found. The nucleation temperature can further be used to
calculate the transition strength α by first computing the DOFs in
the two sectors during the phase transition, which is necessary to
calculate the radiation energy density of the surrounding plasma. ByOrganizing the

procedure of
necessary

calculations

dividing the latent heat by the radiation energy density, one obtains
the transition strength as was described in equation (2.91). Comparing
α to α∞ then determines whether the nucleating bubbles will reach
a terminal velocity and how the energy budget of the transition is
divided into kinetic energy accelerating the bubble walls, into sound
waves, and MHD turbulence.

Next, the dilution factor DSM due to the decay can be calculated as
described in the last chapter: The temperature ratio ξcd at the chemical
decoupling of the dark photon from the dark Higgs is calculated from
ξn and the DOFs in the DS and the SM bath at that point. This thereby
fixes also Tcd

SM. Together with mDH and α32, which can be calculated
using the dark Higgs quartic coupling λ, the dilution factor DSM can
be determined. To use the dilution factor for the calculation of the
SGWB spectrum, it is translated into D using equation (3.35). The ten
necessary parameters that govern the calculation of the SGWB are then
all known, such that the GW spectrum can be determined. Finally,
the SNR for the individual experiments, whose sensitivities have been
shown in Figure 2.12, will be calculated to quantify the observability
of the resultant signals.

During these calculations, it can happen that the nucleation tempera-
ture of the transition lies below the temperature at which the chemical
decoupling would be expected, i. e. Tn

DS < Tcd
DS = mDP. However, this

is impossible, since both the dark photon as well as the dark Higgs are
still massless before the transition, such that the chemical decoupling
will be assumed to coincide with the phase transition, i. e. Tcd

DS = Tn
DS.

In either case, the effective DOFs of the DS calculated assuming an
LTE therein are checked to lie above 0.9 at the chemical decoupling,Further assumptions

on the nucleation
and chemical

decoupling

such that the dark Higgs is still relativistic, when the dark photon
becomes Boltzmann suppressed. In the evaluation of the nucleation
criterion, the DOFs of the DS will be set to four (corresponding to two
internal DOFs for the massless dark photon and the dark Higgs each).
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Furthermore, this represents a conservative3 approximation account-
ing for our ignorance of out-of-equilibrium effects that can happen at
the bubble wall: Within the past two years, two additional processes
known as the “bubble filtering” production [63, 64] and the “bubble
expansion” [65, 66] production of particles have been found to be
able to modify the naively expected particle abundances that can be
calculated assuming an LTE at both sides of the bubble wall.

4.2 exploration of the model parameter space

The parameter space of our model spanned by λ, g, v, Γ, and ξn can
be organized into groups: The only dimensionful quantities are v and
Γ, out of which only v goes into the computation of the FOPT. Since
ξn merely leads to a logarithmic shift in the nucleation criterion due
to its occurrence in the effective DOFs gtot,n

eff,ρ , the whole first part of the
calculation can be understood by only considering λ, g, and v. As has
been argued before, g works as a measure of the height of the ther-
mally induced potential barrier, while λ determines the importance of
self-interactions in the tree-level potential. For a given quartic coupling The couplings λ and

g determine α and
β/H

λ, a large gauge coupling g therefore indicates stronger transitions,
while a low g decreases the height of the potential barrier. Vice versa,
for a fixed gauge coupling g, a small (large) λ indicates less (more) im-
portance of the temperature-independent effects. We therefore observe
the dependence of α on these two parameters, as shown in Figure 4.2.
The white area above the band in which FOPTs are possible refers to
the case where the nucleation condition can never be fulfilled, such
that the Universe is trapped in the false vacuum until today. In the
area below, the contrary is the case: The thermally induced barrier
is so low that the real part of the dark Higgs field does not have to
tunnel to its true vacuum state to minimize its free energy. Instead, the
transition rather occurs smoothly in the form of a crossover, in which
no bubbles and no SGWB can form. We further observe that α and β/H
are not completely uncorrelated in our model, as it is usually the case
[12, 26]: A strong transition is also a slow transition, which favors the
observability of the produced signal.

We will focus on strong phase transitions in our analysis. We will The VEV v sets an
energy scale; above
O(100 GeV) no
influence on α and
β/H

therefore take λ = 1.5 · 10−3 and g = 0.5 as a benchmark point
for a high potential barrier with low tree-level effects, resulting in a
relatively strong (α ' 10−1) and slow (β/H ' 103) FOPT. However,
any other point along the upper border of the colored band shown in

3 We have checked explicitly that a lower number of effective DOFs in the DS at the
nucleation leads to weaker signal strengths due to the decrease in the dilution factor.
The latter is due to the decrease in the temperature ratio ξcd for an already initially
low number of DOFs gDS,n

eff,s in the DS.
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Figure 4.2: Plot of the phase transition strength α and the inverse time scale
β/H in dependence of the gauge coupling g and the quartic
coupling λ. The tree level VEV has been set to v = 2 TeV and
the temperature ratio between the DS and the SM bath at the
nucleation of the possible phase transition is fixed to ξn = 1.
There exists a band in the parameter space of g and λ, in which
FOPTs are possible. If the gauge coupling is too large (small) for
a given quartic coupling, the thermally induced barrier in the
effective potential gets too large (small) for an FOPT to happen.
Within the range of possible FOPTs, the ones at the upper bound-
ary are therefore strong and slow, while at the lower boundary,
the transitions are weak and fast.

Figure 4.2 could be chosen without changing the following discussion,
as α and β/H almost remain constant and the generated spectra
therefore do not differ considerably. Further, setting a VEV v only has
a relatively small effect on the transition strength and time scale, as its
only influence consists in setting an energy scale, at which the effective
DOFs of the SM particles being abundant during the nucleation is set.
The latter go into the calculation of the radiation energy density, to
which the latent heat of the transitions is normalized to, in order to
obtain their strength α. Since smaller v therefore lead to a smaller gtot,n

eff,ρ ,
the transition strength increases slightly, when the VEV is decreased.
The other way around, still keeping λ and g fixed, an increase in v will
decrease α until v ' 100 GeV is reached, when the corresponding DOFs

of the SM bath cannot increase considerably further. This expected
behavior can also be seen in Figure 4.3, in which the influence of v,
ξn and Γ on the SGWB spectrum are depicted in a condensed form:
While for v = 1 GeV (and ξn = 1) a peak signal strength above
h2 ΩGW ≈ 10−13 can be reached, the compared spectra that have
been obtained for v = 1 TeV and v = 1 PeV both have a peak signal
strength that lies one order of magnitude below. To be more precise,
we computed α = 0.64 for ξn = 1 and v = 1 GeV, whereas we obtained
α = 0.14 for v = 1 TeV and v = 1 PeV with the temperature ratio kept
fixed at ξn = 1.
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Figure 4.3: An overview plot for the different possible SGWB spectra that can
be provided by our model for a strong FOPT (λ = 1.5 · 10−3, g =
0.5), compared to the expected PLI sensitivities of the different
GW observatories presented in Figure 2.12. The plot shows the
resulting spectra of the phase transition of a dark Higgs acquiring
its VEV v = 1 GeV (teal), v = 1 TeV (green), or v = 1 TeV (turquoise).
Dotted lines refer to the case when ξn = 1, whereas dashed
and solid lines indicate ξn = 2 and ξn = 10, respectively. The
dependence of the spectrum on the dark Higgs’ decay width
is indicated by lighter colors. The main result is that increasing
ξn leads to a strong enhancement of the signal strength when
the dark Higgs decays sufficiently fast. The tree level VEV shifts
the signal to other frequencies and can have an influence on α,
determining the signal strength, for v . 100 GeV.
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The effect of an increase of ξn on the spectrum can be obtained by
comparing the dotted, dashed, and solid lines in Figure 4.3: If the
temperature ratio increases from 1 to 2, an increase of the signal
strength by one to two orders of magnitude can be achieved. If theIncreasing ξn leads

to stronger signals spectrum is already sufficiently high for ξn = 1 (as it is the case for v =

1 GeV), the signal strength cannot be enhanced much further. Moreover,
there seems to be a common maximal signal strength independent
of the chosen VEV v. Both effects can be explained through the factor
∝ α/(1 + α) that occurs in equation (2.89): If α is already large (& 1)
for ξn = 1, as it is the case for v = 1 GeV, the signal strength cannot
be enhanced much further. Since the ratio α/(1 + α) converges to 1
for large α, independent of v, the spectra all reach the same height in
the presented cases in which ξn = 10.

So far, only the impact of v and ξn has been considered. The dark Higgs
decay width Γ has been set to a relatively high value, corresponding
to short lifetimes and no efficient injection of entropy into the SM,
allowing for D ' 1, which indicates a negligible effect of dilution.If Γ is too low,

dilution of the SGWB This, however, changes when smaller dark Higgs decay widths are
considered: If the dark Higgs becomes too long-lived, it can move
out of equilibrium, inject a considerable amount of entropy into the
SM bath, and dilute the SGWB to lower signal strengths and frequency
scales, as has been depicted before in Figure 3.6.

It should be remarked that an increase in one order of magnitude in v
has to be accompanied by an increase in two orders of magnitude in Γ
to show a comparable signal strength with an approximately equal
dilution factor. This is due to the scaling of the Hubble parameter
with H ∝ T2, to which Γ has to be compared in the calculation of D.
Therefore, the shift from v = 1 GeV to v = 1 TeV and v = 1 PeV comes
with a shift from Γ = 10−22 GeV to Γ = 10−16 GeV and Γ = 10−10 GeV
to provide in all cases a dilution factor D ' 1 for the uppermost curve.

As we could see in Figure 4.3, VEVs in the TeV- and PeV-scale are
favorable for a detection of the predicted signals with LISA and the ET,
respectively. We will therefore extend our benchmark point for λ and
g, denoting a slow and strong FOPT, to energy scales that are testableDefining benchmark

points by the two experiments considered here. The two benchmark points
can be found in Table 4.1. As is already clear from the shown Figure
4.3, the other GW interferometers planned to operate with higher
sensitivities in the intermediate frequency range between LISA and the
ET will be able to test the signals of weaker phase transitions, which
our model can account for and whose strength could be enhanced
by ξn > 1. The following analysis will however focus on the study of
strong phase transitions observable by LISA and the ET, as we expect
them to be the first to start taking data.



4.3 observation of the produced gravitational waves 87

Benchmark point λ g v

LISA 1.5 · 10−3 0.5 2 TeV

ET 1.5 · 10−3 0.5 10 PeV

Table 4.1: Two benchmark points to study the impact of Γ and ξn on the
SGWB produced by a strong and slow FOPT, which can be tested
by LISA or the ET.

To understand the impact of the temperature ratio ξn on the FOPT,
consider also the plots shown in Figure 4.4. Here, the LISA benchmark
point was analyzed for ξn ∈ [1, 10]. One can see that α increases by Understanding the

increase of the signal
strength: α(ξn)

about an order of magnitude and then saturates, when the temperature
ratio is increased from 1 to 2. This matches the expected behavior that
was derived in equation (3.40): For small ξn, the transition strength
(and the critical transition strength α∞) grow with ξ4

n. For larger ξn,
the DOFs of the DS dominate the radiation energy density, such that
α is no more dependent on the relative temperature of the DS with
respect to the SM bath. This is intuitive since in the case of large ξn, the
Universe and its radiation energy are completely dominated by the DS,
such that a change in the SM temperature has only a negligible effect,
when TDS is held constant. This can also be observed in the plot on For large ξn, no

further increase
possible since
gtot,n

eff,ρ ∝ ξ4
n

the right-hand side: The total DOFs gtot,n
eff,ρ at the nucleation grow with

ξ4
n for large temperature ratios, thus canceling the ξ−4

n dependence of
the SM temperature T4

SM for a fixed DS temperature in equation (3.4a),
when the DS dominates. The same phenomenon can be understood
by observing how in equation (3.40) the dependence on ξn drops
out for large temperature ratios. It can further be observed that also(

gtot,n
eff,s

)4/3
grows with ξ4

n for large temperature ratios ξn & 3. The
ratio between the two quantities on the right is therefore almost a
constant, which a posteriori legitimates the argument that lead us to
using D instead of DSM in equation (3.39). The straight orange line
for β/H in the left plot depicts the statement about the canceling of
ξn in the derivation of the inverse timescale. There exists however a
slight change in Tn

DS due to the logarithmic corrections from gtot,n
eff,ρ in

the nucleation criterion that lead to an invisible change in β/H on the
percent level for the considered range of temperature ratios.

4.3 observation of the produced gravita-
tional waves

The impact of our different model parameters has now been discussed—
what is left is the analysis of the detectability of the predicted signals
h2 ΩGW( f ). As we have seen, λ and g determine α and β/H, and thus



88 the dark photon model

100 101

ξn

10−4

10−2

100

102

104

y

y = β/H
y = α

y = α∞

100 101

ξn

102

103

104

y =
(

gtot,n
eff,s

)4/3

y = gtot,n
eff,ρ

Figure 4.4: Dependence of the transition strength α, the critical transition
strength α∞, the inverse time scale β/H (left), as well as the ef-

fective DOFs
(

gtot,n
eff,s

)4/3
and gtot,n

eff,ρ (right) on the temperature ratio
ξn at nucleation for the LISA benchmark point. The nucleation
temperature in the DS is given by Tn

DS = 175 GeV. The transition
strength can be enhanced by increasing ξn until gtot,n

eff,ρ begins to

scale with ξ4
n. Since the same argument holds also for α∞ � α,

the FOPT always occurs in the runaway bubble scenario. There is
no relevant dependence of β/H on the temperature ratio ξn and(

gtot,n
eff,s

)4/3
shows the same dependence on ξn as gtot,n

eff,ρ . The DOF

ratio in equation (3.39) is therefore almost independent of ξn.

control directly the strength of the resulting GW signals. Within the
energy range of our interest, the only effect of v on the spectrum is
to set a frequency scale. As could be seen in Figure 4.3, LISA will be
able to test a frequency range that lies in the TeV scale, whereas the
ET can test phase transitions above the PeV scale. This is the reasonInvestigating SNRs

as a function of ξn
and Γ for the

benchmark points

why we chose the particular set of parameters for our benchmark
points in Table 4.1. Note that ξn and Γ have not been specified for
these points. From Figure 4.3 also only the general dependences on
the observability of these two parameters can be deduced so far, while
a quantitative analysis of the SNRs following the procedure explained
in section 2.5.5 is still due. In this section, we will give an overview
of the competing effects of ξn and Γ on the expected SNRs. To do so,
we will scan over the two leftover parameters for both of the defined
benchmark points.

In Figure 4.5, the results of our analysis of the LISA benchmark point
are shown. On the left-hand side, the dilution factor D is displayed
as a function of Γ and ξn, while the plot on the right-hand side
shows the resulting SNRs of the generated signals for the expectedThe LISA benchmark

point LISA sensitivity curves. The dark Higgs decay width was chosen to
range from Γ = 10−19 GeV to Γ = 10−12 GeV, corresponding to dark
Higgs lifetimes between microseconds and a tenth of a picosecond.
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The lower boundary of the decay width therefore corresponds to
lifetimes that lead to dark Higgs decays happening around the QCD

phase transition. In fact, the temperature Tfin
SM of the SM bath after the

decay lies around O(100 MeV) on the lower end of the plotted region
of parameter space. The constraints from BBN and the CMB on the
number of effective extra relativistic DOFs Neff thus do not reduce the
size of the feasible region of analyzed model parameter space. The
mass of the dark photon is given by mDP = g v = 0.5 · 2 TeV = 1 TeV,
whereas the dark Higgs mass lies at around mDH = 110 GeV. Since the
thermally induced potential barrier is high due to the specific choice of
g and λ, the nucleation temperature lies at a relatively low temperature
of Tn

DS = 175 GeV, below the mass of the dark photon. As has been
shown in the previous discussion, the dark photon obtains its mass
only during the phase transition and is thereby massless for TDS > Tn

DS.
Hence, the temperature of the chemical decoupling of the two DS

species coincides with the nucleation, i. e. Tcd
DS = Tn

DS. This makes sense, Nucleation and
chemical decoupling
coincide

since immediately after the transition mDP � TDS holds, resulting
in the instantaneous decoupling of the dark photon. Therefore, the
temperature ratio between the two sectors at the nucleation coincides
with the chosen temperature ratios given along the horizontal axes,
i. e. ξcd = ξn. Further, as has been already depicted in Figure 4.4, the
considered transition is so strong that α� α∞, which implies that the
latent heat of the FOPT goes directly into the acceleration of the bubble
walls and eventually into their collision. This means that the spectral
shape will remain a simple broken power law without any additional
features at all points of the shown plane in the parameter space.

For ξn = 1, the signal generated by the dark Higgs phase transition is
not observable, regardless of the particular value of the dark Higgs
decay width. When the temperature ratio is increased to ξn = 2, the
GW spectrum becomes observable with LISA. What happens with the
spectrum has already depicted in Figure 4.3 for a transition with v = The competition

between α and D for
large ξn and low Γ

1 TeV instead of 2 TeV (as in the benchmark point under consideration):
The signal curve enters into the region that is enclosed by the PLI

sensitivity curve, indicating the observability of the signal. This is
however not possible, if the dark Higgs decay width is lower than
about 3 · 10−19 GeV. In that case, the dilution factor becomes too large
for the signal to still be observable with the expected sensitivity of
LISA. Going to higher temperature ratios, the competing effect of the
increase in α, leading to higher signal strengths, and the increase in D,
leading to a shift to lower signal frequencies and strengths, result in a
“rectangle” region of experimentally testable model parameter space.

As we noted in the previous chapter, we have to be aware that our
fundamental assumption of the two considered sectors of particle
physics being thermally decoupled only holds for sufficiently low Γ.
In the plot, we excluded a part of the parameter space that should be
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Figure 4.5: The dilution factor D (left) and the expected SNR (right) for the
LISA benchmark point in dependence of the temperature ratio
ξn between the DS and the SM bath at nucleation and the decay
width Γ of the dark Higgs. In large parts of the shown parameter
space, the dilution factor is 1, such that the produced SGWB does
not get diluted when the DS injects its entropy into the SM bath.
This is however only the case if Γ is sufficiently high. When
the dark Higgs becomes so short-lived that that Γ > HDH ≡
H(TDS = mDH), our assumptions of a non-relativistic DS decay
and distinct thermal baths do not hold any more, such that no
qualified statements can be made about the region shaded in
light blue.

testable following our naive calculations, which is however forbidden
as it violates the above condition. Explicitly, we require the dark
Higgs to have a decay width below HDH ≡ H(TDS = mDH). In doing
so, we can exclude the case of relativistic dark Higgs decays, whichIn the blue region,

the DS is no more
“dark”

our employed approximations do not account for. Additionally, we
can neglect the effect of inverse decays of SM particles to dark Higgs
bosons [24], which we ignored since the derivation of equation (2.13). If
inverse decays could happen instead, the DS could moreover no longer
be referred to as “dark”, when the dark Higgs gets non-relativistic,
as the DS would already be coupled to the SM bath then. In the most
extreme cases, close to the physically forbidden area in light blue,
there lies the region in which the highest SNRs of O(100) are expected.
In these cases, the dark Higgs decays immediately after the phase
transition while still following its equilibrium distribution. The entropy
injection is thus minimal and virtually no dilution of the SGWB can be
generated in the purple region.

The very same picture can be drawn from our analysis of the ET

benchmark point in Figure 4.6: Here, the VEV was set to v = 10 PeV
and the analyzed range of dark Higgs decay widths lies between
10−11 GeV and 10−5 GeV, corresponding to tiny dark Higgs lifetimesThe ET benchmark

point between 10−13 and 10−19 seconds. In these cases, the corresponding
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Figure 4.6: Scan over the temperature ratio ξn and the decay width Γ of the
dark Higgs for the ET benchmark point. The dilution factor D
shows the same behavior as in the case for the LISA benchmark
point. Also in this case, the dilution of the SGWB for a sufficiently
long-lived dark Higgs and the finite sensitivity of the observatory
lead to a lower limit of decay widths Γ that can be tested by the
ET.

energy scales are so high, that (even for ξn = 10) the nucleation
temperatures Tn

SM lie well above the electroweak scale. Thereby, the
possible decay mechanism of the dark Higgs must be due to effects
that could be explained in an effective field theory, but not in the
currently presented form of the model. This is because no mixing
between the massive dark Higgs boson and the still massless SM Higgs
can occur before the EWPT. Explicitly, the nucleation temperature in
the dark sector lies at Tn

DS = 851 TeV and the mass spectrum is given
by mDP = 5 PeV and mDH = 548 TeV. Hence, again due to the strong
FOPT, the nucleation temperature lies below the dark photon mass,
forcing the chemical decoupling to happen coincidentally with the
nucleation. Therefore, the presented discussion of the LISA benchmark
point also holds for the ET benchmark point. Note, however, that
only slightly lower SNRs can be reached. This is due to the steeper
sensitivity curve for lower frequencies of the ET with respect to LISA.
A central result of our study of the chosen ET benchmark point is
that the resultant SGWBs corresponding to a dark Higgs decay widths
below 2 · 10−11 GeV cannot be probed with the expected ET sensitivities
for the investigated range of temperature ratios. Since both α and D
saturate for large temperature ratios, leading to the SNR losing its
dependence of ξn, the statement about the limit of testable parameter
space will also hold for larger temperature ratios.

Using the results of our study of benchmark points, we can also make
qualitative statements about the observation of SGWBs as predicted by
our model with other experiments than LISA or the ET. In particular, as
could be observed in Figure 4.3, for a phase transition, which is about
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as strong as the one we considered in the benchmark points (which,
hence, lies along the upper boundary of the plot shown in Figure 4.2),
the generated signals for v = O(TeV–PeV) will likely be observable
by DECIGO for combinations of ξn and Γ that at least do not dilute the
signal strongly. In fact, the signal described in the LISA benchmark
point study could achieve even higher SNRs ranging from 30 to 3000More parameter

space can be tested
with better

experimental
sensitivities

with DECIGO throughout all of the shown region of parameter space.
In contrast, the ET benchmark point will not be testable by DECIGO,
even for the most optimistic case of D = 1 and ξn = 10. This is
due to the signal’s power-law spectrum having about the same slope
as the sensitivity curve and a slightly too-high peak frequency (or,
equivalently, VEV v).

For weaker transitions, lying in the center or even the lower end of
the band shown in Figure 4.2, the condition mDH < mDP can still be
fulfilled such that our assumption on the DS decay through dark Higgs
bosons still holds. This also legitimates why we only focused on this
case within our previous discussion. However, due to the decrease in
α, the spectra will lie orders of magnitude below those presented in
Figure 4.3. Due to the increase in β/H, there will also be an additional
increase of the peak frequency, as has been argued in the discussion
of Figure 3.6 in the previous chapter. Therefore, to observe an FOPTWhat would change

for weak FOPTs that is weaker and faster compared to the benchmark cases discussed
above, the VEV would have to lie at a lower energy scale than the one
considered in our studies. The increase in the signal strength due to a
large temperature ratio ξn could in these cases indeed render a specific
set of model parameters, usually only provoking a relatively weak and
unobservable transition for ξn = 1, testable with GW observatories.
Moreover, an even larger increase in the signal strengths could be
expected than in the two benchmark cases presented here for large
temperature ratios, since the saturation in α/(1 + α) would not occur
as quickly. Note that the above reasoning might be modified if the
transitions become so weak that the impact of the bubble wall velocity,
which we optimistically set to vw = 1, can no longer be ignored in the
calculation of the SGWB spectrum.

4.4 summary

The central result of the investigation of the proposed model is that,
indeed, the signal strength of an SGWB being generated through an
FOPT in a DS will increase, if the relative temperature of the latter to
the SM bath is increased. Put in a more direct wording: The hotter a
DS featuring an FOPT is, the louder the resulting SGWB spectrum will
be. Since a hot DS contains a considerable amount of energy which
would lead to the untimely end of our Universe if it would remain
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Figure 4.7: Overview of the two effects of the temperature ratio ξn and the
dark Higgs decay width Γ on the SGWB spectrum. An increase in
ξn increases the transition strength α. Therefore, the GW signal
gets amplified and becomes observable. This is, however, only
possible if the dark Higgs is sufficiently short-lived. In the case of
a long-lived dark Higgs, its decay injects a considerable amount
of entropy into the SM bath, diluting the generated SGWB. The
signal generated through the FOPT can therefore be tested by LISA

only for sufficiently large temperature ratios and decay widths.
The spectra shown in the plot refer to the LISA benchmark point
with ξn = 1 (blue), ξn = 2 (violet), and ξn = 5 (red) and a dark
Higgs decay widths of Γ = 10−16 GeV (solid lines), Γ = 10−18 GeV
(dashed lines), and Γ = 10−20 GeV (dotted lines).

there, the energy must be injected into the SM bath through the decay A hotter DS is louder,
if it decays
sufficiently fast

of the DS, leading to a dilution of the produced SGWB. We found
that this contrary process, being controlled by the decay width of
the dark Higgs into SM particles, can lead to the non-observability
of GW signals coming from long-lived DSs. Our results suggest that
the detection of an SGWB of cosmological origin by LISA or the ET

could be well-explained by a strong FOPT in a hot DS which decayed
sufficiently fast to not dilute the resultant signal. The observation of
weaker signals by other still-to-come GW experiments in a comparable
frequency range with higher sensitivities could correspondingly be
explained in our model by weaker FOPT in only warm DS, decaying
later to SM particles. Figure 4.7 summarizes these results by comparing
the spectrum of the SGWB generated by the LISA benchmark point for a
choice of different temperature ratios ξn and dark Higgs decay widths
Γ to the corresponding PLI sensitivity region.





5 C O N C L U S I O N S

In this thesis, we presented our studies on the stochastic gravitational
wave backgrounds (SGWBs) which are produced by first-order phase
transitions (FOPTs) in hot dark sectors (DSs). We showed that the signal
strength of SGWBs can be enhanced by an increase of the temperature
ratio between the DS and the Standard Model (SM) bath during the
phase transition, as long as the lightest DS particle, carrying most of the Our main results

DS energy density, decays sufficiently quickly into SM particles after
the transition. If the DS is instead long-lived, the out-of-equilibrium
decay of its lightest particle species can lead to a considerable entropy
injection into the SM bath, resulting in the dilution of the SGWB. To
demonstrate this general result, we investigated the parameter space
of a minimalistic “dark” U(1)D extension to the SM featuring an FOPT.

In this phase transition, a complex scalar field charged under the
additional gauge group develops a non-zero vacuum expectation
value as the temperature decreases. Consequentially, bubbles nucleate
into the hot primordial plasma, in which the radial mode of the
scalar field and the gauge boson of the U(1)D are massive. These
bubbles eventually collide, giving rise to an SGWB. We refer to the two
massive dark particle species as “the dark Higgs boson” and “the dark
photon”, respectively, as we assume that their interactions with SM

particles are negligible until the decay of the DS. Due to the lack of
interactions, the two sectors form distinct thermal baths. We found
that a DS temperature above that of the SM bath at the nucleation of
bubbles increases the transition strength with respect to the case of
coinciding temperatures. Considering the case of the dark photon
being more massive than the dark Higgs, the dark photon will freeze
out after the phase transition and leave the dark Higgs as the lightest
DS state. Depending on the lifetime of the dark Higgs, it can become
non-relativistic before its decay into SM particles and lead to an early
matter domination. In this case, the dark Higgs decay will reheat the
SM bath and dilute the SGWB considerably. To show the two individual
effects, we analyzed two benchmark points for strong FOPTs testable
by LISA and the ET. In either case, the SGWB can be observable, if the DS

is at least twice as hot as the SM bath during the phase transition. We
found that an observation is only possible for dark Higgs decay widths
above 3 · 10−19 GeV for LISA and above 2 · 10−11 GeV for the ET. This
corresponds to lifetimes below 2 · 10−6 s and 3 · 10−14 s, respectively.
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To calculate the dilution effect of the dark Higgs decay, we modeled
the evolution of the DS after the phase transition and the subsequent
thermalization with the SM bath. First, the two dark particle species
form a local thermal equilibrium, which allows for the description us-Our description of

out-of-equilibrium
decays extends the
existing literature

ing effective degrees of freedom. As soon as the DS temperature drops
below the mass of the dark photon, we assume that it freezes out of the
equilibrium. Afterwards, the dark Higgs is still relativistic. However,
due to self-interactions number-changing processes can become rele-
vant, resulting in an intermediate phase of cannibalism before the dark
Higgs becomes non-relativistic. To describe the evolution of the en-
ergy density of the dark Higgs throughout its cannibalistic phase, we
assumed that its chemical potential vanishes. We showed that in this
case, the evolution of the dark Higgs energy density can be computed
from the conservation of the comoving DS entropy density. Finally, we
assumed that the dark Higgs decays non-relativistically. Our findings
regarding the effects of an intermediate phase of cannibalism extend
and improve the existing literature on out-of-equilibrium decays.

We used and adapted CosmoTransitions [67] to perform the neces-
sary calculations. To do so, we updated it to be used with Python

3, modularized it further to use model files, added a possibility toOur code will be
published compute effective one-loop potentials, and implemented a general

user interface for scans over parameter spaces. The code also offers
the computation of signal-to-noise ratios for a list of GW observatories.
Moreover, our code includes a module to solve the set of differential
equations governing the out-of-equilibrium decay of a DS particle
species, which can be preceded by a phase of cannibalism or early
matter domination. This module can be used to quantify the dilution
of SGWBs and frozen-out dark matter abundances. A publication of
the code is still due, but a short summary of our extensions to the
code can be found in the appendix A. It would also be particularly
interesting to combine our code with the software tools GAMBIT [68]
and Vevacious [69].

We employed the computational procedures described in the refer-
ences [49] and [12] for calculating the resulting gravitational wave (GW)
signals of FOPTs in DSs. As the field is however quickly evolving, we
did not account for several new developments, which have been well-
summarized in reference [48]: Most importantly, we did not include
effects arising from the finite lifetime of GW sources and used the
nucleation temperature as a reference scale to define thermodynamicNew developments

in the field, which we
did not account for

quantities. New findings suggest to employ the “percolation tempera-
ture” instead, corresponding to the point in time where a significant
fraction of the Universe is already filled with bubbles of the broken
phase [70]. In our calculations, the obtained GW spectra for strong
FOPTs were dominated by the contributions of bubble collisions, whose
description relies heavily on previous semi-analytical work that uti-
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lized the envelope approximation. In this approach, it is assumed that
the scalar field’s stress-energy is located in an infinitesimally thin shell
around the bubble wall, which vanishes when two bubbles collide.
Lately, this approximation was shown to yield larger signal strengths
than predicted by fully numerical simulations of bubble collisions
[71]. Moreover, we did not include the different particle interactions
which can happen at the bubble wall in our computation, which have
been presented in the references [63–66] and could, in turn, change
the thermal evolution of the DS after the phase transition. We spared
altogether the discussion of the different particle physics processes in
the vicinity of bubble walls, which would constitute sources of friction
on them. This approach relies on the assumption that the transitions
under consideration are so strong for such effects to be sufficiently
negligible. According to the references [12, 50], this approach is le-
gitimate for phase transitions of the strength we considered in our
benchmark point study. For weaker transitions, the runaway-bubble
scenario in which bubble walls accelerate continuously will likely not
be applicable, making necessary an in-depth analysis of the processes
happening during the expansion of bubbles. In our calculation of the
effective potential, we contented ourselves with the one-loop descrip-
tion including corrections from daisy diagrams which were resummed
using the method proposed by Arnold and Espinoza [37]. Today, next
to lattice QFT approaches, further developments have been achieved
in the calculation of the effective potential, see for instance references
[31, 72]. Further studies should respect these current developments.
However, we are confident that the processes we described are so
general that their effects will persist also when accounting for these
recent findings for precision calculations. Nevertheless, more work
will be needed to make our predictions completely robust.

In addition, it should be noted that our analysis of the evolution of
the DS energy density after the FOPT reduced the complexity of the
problem by approximating the results of the full numerical solution
of the Boltzmann equation. In doing so, we ignored the case of rela-
tivistic and inverse mediator decays as well as the scenario in which
more than one DS species is able to thermalize the two sectors. Subse-
quent studies should investigate these possibilities to obtain a more
general description of the decay of hot DSs. Moreover, we remained
agnostic about possible explanations for the occurring temperature
ratios between the SM bath and the DS, which we required in our
analysis. Additionally, we did not present a self-contained discussion
of possible decay channels of the the dark Higgs boson before the Many ideas for

further researchelectroweak phase transition. Hence, we focused on a rather model-
independent approach when choosing the dark Higgs decay width as
a fundamental model parameter of our analysis. Future studies are
needed to close this gap and connect the decay width with the dark
Higgs mass and the couplings to its decay products, to allow for a
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phenomenological analysis of the dark photon model. An intriguing
possibility for further studies will also be the discussion whether the
frozen-out dark photon in our model could account for (a fraction of)
dark matter in our Universe. The dilution effect due to the dark Higgs
decay might allow for particularly high dark photon masses above
O(100 TeV), which would be forbidden for non-diluted dark matter
by the unitarity bound [13].

The results of our research open the doors for many possible future
projects. In the light of the recent observations of NANOGrav [8, 11]
and the plans for additional space-based GW observatories next to
LISA, we are looking forward to many more hints towards a satisfying
understanding of SGWBs. It is fascinating to see the rapid progress
in the field of observational GW physics, which kick-started with the
detection of the first signals only five years ago [3]. The weakness ofWe live in exciting

times! Newtons gravitational constant, or equivalently the huge energy scale
of the Planck mass, dictates that the sources of observable GWs have to
be staggering events of tremendous power, be it the merger of black
holes and neutron stars or the collision of bubbles in the hot plasma of
primordial particle species. Therefore, we can already now predict that
the experimental results using GW observatories of the next generation
will allow us to further investigate our cosmos and get closer to an
understanding of its very beginning. It is humbling to realize that we
are still the first generation of physicists in the human history that
can directly probe how our Universe must have looked like 14 billion
years ago. However, to unravel the still unknown mysteries of the
most remote corners of space-time, there is still a lot of work to be
done, paving the way for many future studies to come.



A T H E S O F T W A R E E M P LOY E D
F O R O U R C A LC U L AT I O N S

To perform our analysis of the possible phase transitions in DSs, we
used a customized version of CosmoTransitions by Carroll L. Wain-
wright [67]. CosmoTransitions comes with the necessary tools to trace
the global and local minima of a given effective potential of one or
multiple scalar fields. Moreover, it allows to identify the possible phase
transitions between these minima. CosmoTransitions is often used as
a benchmark code in the literature [69, 73], as it is sufficiently stable
and fast. Next to the identification of FOPTs, also the calculation of
bounce actions and bubble profiles is possible with CosmoTransitions.

We first updated the individual modules of the program to work with
Python 3 and extended it by an accurate nucleation criterion for FOPTs

in DSs with a distinct temperature from the SM bath. Next, we added
the code necessary to compute the important phase transition param-
eters α and β/H. This required a model file, in which the effective
potential V1−loop

eff (φ) and the mass spectrum of the DS are given, and
an additional module to calculate effective DOFs. Furthermore, we
added a module for the calculation of dilution factors DSM, in which
the decay of the DS is modeled. Another module for the calculation of
SGWB spectra and SNRs has been added to interpret the observability of
the generated signals. This set of modules is controlled by an interface,
which itself is executed by a small scan file, which defines the region
of parameter space, that one wishes to analyze. In addition, there are
a few parameters for adjusting the accuracy of scans and the grid over
which one likes to scan, for instance.

An overview of the tree of dependences of these different modules in
our program is shown in Figure A.1. In the following, we will discuss
briefly, what the individual modules can be used for. Note that this
list is not exhaustive and includes only the most important features.

my_scan.py defines the kind of analysis, that a user wishes to per-
form. This includes a simple computation of the resultant SGWB

of a hot DS phase transition for a given set of parameters or
whole scans over regions of parameter space. In either case, first
a model file my_model.py has to be called. Then, a set of phys-
ical input parameters is specified. If a scan is performed, the
grid size and the range of parameters to be scanned over has
to be set. The latter allows for combinations of linearized and
logarithmized scales on the two axes of the plane in parameter
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my_scan.py

scanner.py

my_model.py

generic_potential.py

geff.py dilution.py transitionFinder.py

observability.py

Figure A.1: The tree of dependences of the different modules that we
employed in our calculations. A user can modify the files
my_scan.py to specify the parameter region and accuracy of
a scan. A DS model can be defined in my_model.py. The output
of each scan will be a large set of plots to show how physi-
cal quantities like particle masses or nucleation temperatures
vary throughout the chosen plane in the model parameter space.
The output also includes plots of SNRs for the detection of the
produced SGWBs, see e. g. Figure 4.5.

space. Further, all additional specifications of the model can
be adjusted in this file. This allowed for example for a quick
comparison between a different number of DOFs in the DS un-
til the onset of the FOPT, see footnote 3 in chapter 4.1. Since it
can always happen that CosmoTransitions gets stuck at some
step in the calculation for certain parameter values, we added a
possibility to re-scan over slightly shifted parameter points. The
maximum number of tries and the relative shifts can be adjusted.
For a correct labeling of the parameters in the produced plots
at the end of the calculation, TEX code can be used to name the
parameters.

scanner.py translates the chosen input parameters in my_scan.py

into calls of the model file my_model.py. As the scans require
high computing power, the code also allows for multiprocessing
and a progress bar is shown throughout all computations. In
the case of an analysis of a single parameter point, the result-
ing SGWB spectrum is plotted. We also included a possibility to
directly compare the resulting spectra of different sets of input
parameters, as was shown in Figure 4.3. If a plane in parameter
space is analyzed, a large array of all input and output param-
eters is saved and evaluated by observability.py. A list of all
input and output parameters of our program can be found in
table A.1. Next to the quantities α, α∞, β/H, Tn

SM as well as the
DOFs gtot,n

eff,ρ and gtot,s
eff,ρ, which are needed for the calculation of the
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GW signals, several other interesting parameters are calculated.
These have been obtained throughout the calculations and can
be used to interpret the resulting signal spectra. Since all parame-
ters are plotted also a second time after being logarithmized, and
all SNRs for the observatories shown in Figure 2.12 are plotted, a
total of about 80 plots are produced within each scan. In the end
of the calculation, all parameters and plots are saved together
with a list of warnings and error messages.

my_model.py is a child of generic_potential.py. It uses λ, g, v/GeV,
ξn, and Γ/GeV as an input to compute the effective one-loop
potential and the mass spectrum of the model. We allowed to
use either the daisy resummation procedure by Arnold and Es-
pinoza, the Parwani method or no daisy resummation at all, see
chapter 2.3.4.2. To ensure the computation’s numerical stability,
we set the VEV throughout the calculation to 100 and re-scaled
dimensionful quantities to the correct energy units afterwards.

generic_potential.py is an interface of the module which ana-
lyzes the phase transitions of the given effective potential. It is
taken from CosmoTransitions and extends the original code by
the calculation of the output parameters from table A.1. First,
the possible phase transitions encoded in the effective potential
are analyzed using transition_finder.py. Then, the nucleation
criterion is solved to obtain the nucleation temperature. There-
after, all of the parameters necessary to compute the SGWB are
calculated, except for the dilution factor DSM. This calculation is
performed in the external module dilution.py. If the calculated
dilution factor DSM is equivalent to D < 1, we correct the two
dilution factors accordingly to D = 1 and DSM = gtot,n

eff,s /gSM,n
eff,s .

The case of D < 1 is non-physical, as it would violate the second
law of thermodynamics [13]. We found that this manual cor-
rection is only necessary in regions where a vanishing dilution
effect has been expected in either case. To calculate the exclusion
bounds for Γ > HDH ≡ H(TDS = mDH) (see Figure 4.5), we
also compute the temperature ratio ξDH and the effective energy
DOFs gtot, DH

eff,ρ at TDS = mDH. The Hubble parameter can then be
obtained using

HDH =

√
π2

90
gtot, DH

eff,ρ
m4

DH

ξ4
DH m2

Pl
. (A.1)

transition_finder.py offers the possibility to trace the minima of
the effective potential, to generate a list of possible phase tran-
sitions, and to solve the nucleation criterion. To do so, it solves
the bounce equation (2.62) and integrates the obtained bubble
profiles in order to calculate the bounce action of a transition
at a given temperature TDS < Tc

DS, which lies below the critical
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temperature of a FOPT. The absolute value of the difference of
the right- and left-hand side of the nucleation criterion in equa-
tion (2.63) is minimized to find its solution Tn

DS. This repeated
computation of bounce actions is numerically expensive and
the bottleneck of the presented program. To precisely determine
β/H, we increased the internal accuracy of the bounce action cal-
culation and used in each case at least 50 of support to evaluate
the derivative of the bounce action at the nucleation temperature,
see equation (2.92). The derivative was calculated using the slope
of a linear function that was fitted to the bounce action around
the nucleation temperature. The large number of points of sup-
port has shown to be necessary due to numerical instabilities of
CosmoTransitions in the calculation of the bounce action.

geff.py is a small module to evaluate the integrals in the equa-
tions (3.3a) and (3.3c) to compute dark sector DOFs. For a given
temperature TSM, the DOFs of the SM bath are calculated using
an interpolation of the data given in the ancillary material of
reference [54].

dilution.py contains an implementation of the set of equations
(3.33). These can be used to quantify the entropy injection of
a decaying particle species, mediating between the DS and the
SM. To integrate the set of differential equations numerically, the
equations have been logarithmized. The input parameters of this
module are the SM temperature Tcd

SM at the chemical decoupling
of the mediator species, the mediator mass mmed, its decay width
Γ in GeV, the temperature ratio ξcd at chemical decoupling, the
energy density of frozen-out DM fmat = ρcd

DM/ρcd
med, normalized

to the mediator energy density, the internal mediator degrees
of freedom gmed, and the effective 3 → 2 coupling α32 of the
mediator. The output parameters of this module are the dilution
factor DSM and the temperature of the SM bath after the mediator
decay Tfin

SM. We used an interpolation function for d ln ρ̄
d ln s̄ , which

is required to evaluate the function ζ(θ), defined in equation
(3.11).

observability.py is used to quantify the observability of the GW

signals generated by the analyzed FOPTs. First, the produced
SGWB spectra are calculated using equation (2.89). Then, they are
compared to the expected noise spectra for the considered GW

observatories to compute SNRs. The noise spectra are taken from
the ancillary material of reference [12]. In the case of a scan over
the model parameter space, plots are produced, which show how
the output parameters listed in table A.1 change throughout the
considered region of parameter space.
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Parameter Explanation

λ Dark Higgs quartic coupling

g U(1)D gauge coupling

v/GeV Tree-level VEV of the dark Higgs potential

ξn Temperature ratio at nucleation

Γ/GeV Decay width of the dark Higgs

α Transition strength

α∞
Critical transition strength
for runaway bubbles

β/H Inverse time scale of the transition

DSM Entropy ratio Sfin
SM/Scd

SM

D Entropy ratio Sfin
SM/Scd

tot, see reference [13]

Tn
SM/GeV Temperature of the SM bath at nucleation

Tn
DS/GeV Temperature of the DS at nucleation

gSM,n
eff,ρ Effective energy DOFs of the SM at nucleation

gDS,n
eff,ρ Effective energy DOFs of the DS at nucleation

gtot,n
eff,ρ Total effective energy DOFs at nucleation

gSM,n
eff,s Effective entropy DOFs of the SM at nucleation

gDS,n
eff,s Effective entropy DOFs of the DS at nucleation

gtot,n
eff,s Total effective entropy DOFs at nucleation

gtot,n
eff,ρ /

(
gtot,n

eff,s

)4/3
Ratio of effective DOFs, see equation (3.39)

Tc
DS/GeV Critical temperature of the DS

Tfin
SM/GeV

Temperature of the SM bath
after the decay of the dark Higgs

mDP/GeV Mass of the dark photon

mDH/GeV Mass of the dark Higgs

∆mDP−DH/GeV Mass difference of dark photon and dark Higgs

ξcd Temperature ratio at chemical decoupling

Tcd
SM

Temperature of the SM bath
at chemical decoupling

ξDH Temperature ratio, when TDS = mDH

ξDP Temperature ratio, when TDS = mDP

gtot, DH
eff,ρ Total effective energy DOFs, when TDS = mDH

gtot, DP
eff,ρ Total effective energy DOFs, when TDS = mDP

Table A.1: List of input parameters (above the horizontal line) and output
parameters (below the horizontal line) of the presented code and
the dark photon model. “At nucleation” denotes the onset of the
FOPT, when the nucleation criterion in equation (2.63) is fulfilled,
whereas “at chemical decoupling” describes the moment, when
the dark photon decouples from the dark Higgs.
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