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Gravitational wave cosmology
and dark matter.




The observable universe.

-~ Our Solar System



The observable universe.




The observable universe.




The observable universe.

The CMB...

and the CGWB?




We only understand 5%

We need

DARK MATTER
. 26%

ol m ) N =L oy ; e VI ! ; 7
s & o - . y L 17F — 3 Lahn i
o & Y «

MR SR R o —— = of cold dark matter in order
-l A WAk to explain the CMB, galaxy
R e o - - clustering, the bullet cluster,

galactic rotation curves, ...

Cirelli+ [2406.01705]

[PBS spacetime]
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Pulsar timing arrays.

Loof
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Pulsar timing arrays.

Pulses expected
from timing model

DESY. Carlo Tasillo — PhD defense, October 14th 2024 7



Pulsar timing arrays

\E/v
P A\ AW AYS
: Pulses expected Pulses recorded by
: from timing model radio telescopes
\E/v
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Pulsar timing arrays

Timing residuals
— — — —
P\ AWNAYD
Pulses expected Pulses recorded by
from timing model radio telescopes
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Searching for the Hellings-Downs correlation

Fourier analysis of timing residuals in :
enterprise -
PTAs found an underlying ,common red E 0.5
process” among O(70) pulsars :g :
Signal could have many sources: % OF
= .
- Pulsars themselves: & < 10712 ; e, a GW background
B < 1()—8 g —0.5F
- Ephemeris errors: B < 10~ ' Dipolar correations
- GWs: B =200 — 1000 F: o
0 s s 37

4 2 4
Pulsar separation angle 6,

DESY Carlo Tasillo — PhD defense, October 14th 2024



Merging supermassive black holes

» Observed signal follows a power-law
spectrum with amplitude A and slope ¥

« Astrophysical simulations based on
realistic BH populations predict much

NANOGrav 15-vear weaker signals with higher ¥

IOLODECK Sims
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Merging supermassive black holes

» Observed signal follows a power-law
spectrum with amplitude A and slope ¥

« Astrophysical simulations based on
realistic BH populations predict much

NANOGray 15-year weaker signals with higher ¥

[OLODECK Sims

log|pAGws

DESY Carlo Tasillo — PhD defense, October 14th 2024 Q



Do PTAs observe a dark sector
phase transition’




First-order phase transitions produce GW backgrounds.

Bubbles of the new phase nucleate,
collide and perturb the plasma...

DESY.

10~ °
10~7

10~%
1077 <
/“l: 10—1() _g,

< 10—11 é

&\

10—14 _:, SKA

10~10 108

.. giving

NANOGrav

LISA

Phase transition

GW signal

1079  107% 1072 109 102
f/ Hz

rise to an observable

ET

gravitational wave background.

Carlo Tasillo — PhD defense, October 14th 2024
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Parametrization of the GW signal

10~ e 0 N2 /H\ f
ot (2 ()5 ()
aw () o 5 Front
108 . B T
With  fheak =~ 0.1 nHz X 7 X Mev
%10—10
és I ‘ To fit the new pulsar timing data:
Ny
10713 4 Strong transitions, a ~ 1
L
$
L0-14 4 Slow transitions, f/H ~ 10
10-10 109 Percolation around 7 =~ 10 MeV

f/ Hz

SMBHB: A = 1071°7, y = 13/3

DESY Carlo Tasillo — PhD defense, October 14th 2024 12



Parametrization of the GW signal

1070 F————m o \2/H\"Y f
s () (1) ()
oW ) a+1 B fpeak
10~ . B T
veak == 0.1 NHZ X I X VIS,
-~
= 10710 O data
< r ng data:
& MBS 3
= 10_12 @G@ o ~ 1
S A
: Q’GQQ
10—14 %QQ' /H i~ 10
10-10 109 1085 107 10-¢ Percolation arotnd 7 ~ 10 MeV
f/ H
SMBHB: A = 1071°7, y = 13/3
DESY
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Big Bang Nucleosynthesis and the Cosmic Microwave Background

100 e it Observation of primordial
0-1f v — r v, light element abundances in

good agreement with
10-3} / standard BBN

nnnnn DM NBEN = 2.898 +0.141

Nuclear abundances

1078
0-°F ("Li ~\Be)/'H
E L 1 | I I | obs.

—10 b e e ] T CE—

[Paul Frederik Depta] 1 MGV]
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Big Bang Nucleosynthesis and the Cosmic Microwave Background

Observation of primordial
light element abundances in
good agreement with
standard BBN

NBBN — 2808 +(.141

eff

CMB _
Neff = 2.99+0.17
Consistent with N°M = 3.044

eff
from 3 v generations

DESY Carlo Tasillo — PhD defense, October 14th 2024 13



Big Bang Nucleosynthesis and the Cosmic Microwave Background.

ordial
lances in

» QObservation c

- 990 +0.17
: : SM _
. Consistent with Neff = 3.04

from 3 v generations
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Adding more Higgs bosons to the Standard model

There's no strong
first-order phase transition at
10 MeV in the Standard Model.

(

DESY Carlo Tasillo — PhD defense, October 14th 2024
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Turning on the light in a dark sector

Stabhle dark sector Decaying dark sector

Additional DS energy density Can the dark sector decay quickly
accelerates Hubble expansion via enough to the SM to get around
BBN and CMB constraints?

ANeff > 06X

Butwe needa ~ 1...

ANeff <022 @95 % C.L. 5

Carlo Tasillo — PhD defense, October 14th 2024



Stable dark sector phase transition: A naive fit

NG12.5, sound waves, stable dark sector,
ignoring cosmological constraints

ANeg > 0.22: excluded by
BBN and CMB at 95% C.L.

% B/H < 3: Super-Hubble bubbles
B/H < 10: GWB is overestimated

e GO
e

| Agood fit would require |
enormous ANgfs > 0.22 |

. ST P . e :

02 2 o - _ 2
& P TRP L NPAORN ) R D 35

Giant bubble sizes would be needed, violating ]
{ causality & questioning validity of GW predictions |

L L J-L._I—LH-LL

10°10° 10! 102 10310_4I 16_3 | 10I_2 | Iilé_i()_é | 10I_1 | 1(I)0 ””1“'()110_”5 II 1(I)0I 1(I)2I 104
« B/H Tp/GeV gp ANeff
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B/H < 3: Super-Hubble bubbles
B/H < 10: GWB is overestimated

o —— NG12.5, sound waves, stable dark sector, 8/H > 1
GIObaI flts J\ NG12.5, sound waves, stable dark sector, 8/H > 10

Combined PTAand BBN/C(MB ="

likelihoods in enterprise y

p/H > 1:Would fit the data if =~ »
O

GW spectrum were reliable =0

- Shot noise P

because not explaining PTA e

data is better than messing 12
03] } | |
Tu ) ? N

10-510-110210-210-100  10° 102 10°0-10-10-10- 110910402 101 10° 10! 0.1 03 05
Qo B8/H T,/ GeV &p ANeg
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GIObaI fits —— NG12.5, sound waves, stable dark sector, 8/H > 1
o —— NG12.5, sound waves, stable dark sector, 8/H > 10
J“. W% B/H < 3: Super-Hubble bubbles
y l  [/H < 10: GWB is overestimated

1035 e maa

. Combined PTAand BBN/CMB ="
likelihoods in enterprise _

o fIH > 1 e
GW sc

e [(/H >
becaus

data is
up BBN

0.1r

R T T T T T T T T i o T T T B W
8% B/H Tp/GeV gp ANQH
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Decays to the rescue

— NG12.5, sound waves, decaying dark sector
77 B/H < 3: Super-Hubble bubbles

B/H < 10: GWB is overestimated

/* I S _ — - — N

—

If the dark sector decays quickly

i (T¢ < 0.1 s) before neutrino
‘ I
| decoupling (T 2 2 MeV), a great |
l\ fit to PTA data can be achieved:! ”
ﬁ - e j

10-6¢ : .!

_6 % % % ; T BT BRI BRRTTT BNt BRI sod 1o
103102101 10° 10110° 10! 10% 1030410310210 10°10310210" 10° 10106104102 10° 102
Q B/H T,/ GeV ép To | S
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Do PTAs observe primordial black
hole mergers’




Supermassive primordial black holes

10_55—
L Inflation leaves large super-
O Hubble density perturbations
= 10-1L BHs form when these come into

causal contact again, long before
first stars form

Described by mass mpgH and

102 3

DM fraction fpgH

NANOGrav 15yr
NANOGrav 12.5yr

—10 T BT T T AR BTN E T AR T BRI B AT R T BT B AT
10 1072 1078 10=7 107° 10 10~* 10~ 10=2 10~1 10°

f [H7]
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Homogeneously distributed PBHs cannot explain PTA data.

TR

R O 78 B IR O S O R By IRt ROy oo i 3. T

.:.P‘ "’ S ‘_ oy
5 - e RIS =1 . B\ ey
g ~“. ' 9 4
- O A
i
A
, i

o ; Parameter space favored by PTAs is

Lg-1" excluded by astrophysical bounds }

102
am
-
S~
103
dynamical
friction B

1074 : i . . .
- p-distortions < o v | Crucial: excluded regions with small |}
i - " \{ merger numbers. Atal et al. came to |

& the wrong conclusion.

—5 WAV Y L7 L |
10 10° 109 107 108 102 10 10't  10t°

mppn | Mo

peamao o iy e o 4 mair e s g (Lo psma o ity gl o g il e g G L e s oo s ) cai e e . oo s
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PBH clustering
Odc
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Clustered PBHs can explain the PTA data.

* Caveats: u-distortion constraints from PBH

DESY.

Clustering increases merger

;

rate and shifts the best fit
region below constraints:

Iy

Good fit is possible! * ]

production need to be circumvented &
astrophysical constraints are expected to
weaken/shift with clustering

10Y

10~°

1

, , tidal, § \
disk heating disrupti Su .

=\

dynamical
friction

E i-distortions

1010 1011 1012

19
mppn | Mo

T AT
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The (first) LISA miracle.




The WIMP miracle

10~2
If DM can annihilate into SM 10
particles with a cross o 1078
section <0V> ﬁx - Increasing (ov)
DM N E—
% 10141 e . \ . |
10° 101 102 103
// | T =my/T
D H .. the DM abundance can freeze out to

the observed relic abundance for weak
interactions and mpp =~ O(TeV).
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Rage, rage against the dying of the WIMP.

— L T TTTHI R IR L | 1] R R i
3

28 L O _
10 - % @)Ood’ Xe —— -
N 2, G .
10 Sp NN ’%\ Ar ——
B RN RN Ge — -
> 3 N4 .y N e i
o 10 3 V\J/ '\ é, L O, CoFn —
=T el e @ Si ------ -
z 1077 |- XEN TN s N2 Nal ------ —
b ONIT 19 \\02-. o
o o - Z .S CaWQOy ------ =
Direct detection § 1036 - SEPeCDMg 4 )
o 5 - Q) N, DAiy, Do status 5/2024 -
experiments put % 108 - “s “ 2
7 this scenario under e 104
). . o0 B ,
- pressure, excluding £ 107 o White Dwarfs___ 2
: 1] b= _ -
Jvanilla® WIMPs. 5 10T
r(;; 10—46 _
- TSP ORI > | 1048 +
[Lindner+ 2403.15860] 10-50 R A R RTTIT i B R T R L L L1l
1072 10! 1 10 102 10° 10*
DM mass in GeV
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https://arxiv.org/abs/2403.15860

The nightmare scenario

What if WIMPs evade our
detection because they never
were in contact with the SM and
froze out of a secluded dark
sector?

Pospelov+ [0711.4866]

DESY Carlo Tasillo — PhD defense, October 14th 2024

27


https://arxiv.org/pdf/0711.4866

The nightmare scenario.

DESY. Carlo Tasillo — PhD defense, October 14th 2024
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https://arxiv.org/pdf/0711.4866

Our model setup.

Dark sector

Higgs mixing

f': 2
= [0
? ege ° 3
.' ‘. g
» ,~ 5 \
v ) ]
A “
. . {
R - 3 =~ -4 .-_' \. -’ S " < ‘ 320 ‘ ; -7 3 (- > ,:.l E A= X = -4 .’_J o ;

Before the phase transition
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Our model setup. GWs

Dark sector

m, = VAV Higgs mixing
M

/lhgb

e -

; PT triggers chemical
t decoupling of the DM}
t fermion, i.e. freeze-out j§

After the phase transition
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A first glance at our punchline

DESY
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Theorem:

There is a correlation between the G\W peak
frequency and the .

Proof:
fpeak o vV and for a transition with

vacuum expectation value v.

Lemma:
— fpeak ~ @(mHz). If DM

freeze-out is triggered by a strong phase
transition, it is observable using LISA.

Carlo Tasillo — PhD defense, October 14th 2024
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The miracle at work

: Peak frequency: fpeak ~ 10mHz [ = ~ 10 mHz

Assuming that dominant annihilation
, 1078 GeV—2 2 channel is yy — ¢
DM abundance: Qnnmh° ~ 0.] ———m8 ——— x —
DM 5 v 2

2 2
m)( Vv

Since Yukawa coupling y is a-priori arbitrary: no correlation expected...

DESY Carlo Tasillo — PhD defense, October 14th 2024



Intermediate Yukawa couplings

Strong-GW condition:
. . <
Sizable couplings and m;, < my; -
é.
3
x
2
@, unstable potential
1001' ' """.'I T ' """.'I ' L
- Yukawa coupling y = O Yukawa coupling y = 0.5 e
S
20
=
E
3
o
2
@, unstable potential

10°

10_1 R L I Ll R 2

10~4 10~3 102 104 10~3 10~2 10

Quartic coupling A Quartic coupling A
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Intermediate Yukawa couplings

Strong-GW condition:

unstable potential

Sizable couplings and m, S my; -
Freeze-out condition:
DM cannot be lightest dark sector :f
state: my, < m, ormy < m,
100 v couping v = 0,2 ] )
O

.|_

Quartic coupling A

DESY Carlo Tasillo — PhD defense, October 14th 2024

" Yukawa coupling y = 0.5 __afae

unstable potential

103
L oh . Ll Lo h 102
102 104 10—3 10=2
Quartic coupling A
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Intermediate Yukawa couplings

Strong-GW condition:
Sizable couplings and m, S my;

N/

Freeze-out condition:
DM cannot be lightest dark sector

state: my, < m, ormy < m,

Gauge coupling g

unstable potential

Conclusion: F Yukawa coupling y 0 /‘ﬂ; F Yukawa coupling y:'o.';;' =
< S E =
< o)
%;o 104
CC; unstable potential
103
Yukawa couplings are bounded and -
. oo 10— — 2 B ||||||I_ L ......4_ 4-_ L ||||||I_ L ......4_ 102
©(0.1). Miracles can happen! & 10~ 107 10-* 10~ 10~ 10

Quartic coupling A Quartic coupling A
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You shouldn’t be convinced, yet

So far we skipped over several potential issues:

Sizable Yukawa couplings vs. vacuum stability

What about the yy — A’A"and yy — @A’ annihilations?
Influence of temperature ratio & = Tphg/Tgp on QLgw(/f) and Qpp?

Ang: Collider bounds? Early matter domination?

DESY Carlo Tasillo — PhD defense, October 14th 2024 33



You shouldn’t be convinced, yet.

So far we skipped over several potential issues:
» Sizable Yukawa couplings vs. vacuum stability

- What about the yy — A’A’and yy — @A’ annihilations?
- Influence of temperature ratio £ = Tpg/Tgp on QLew(f) and Lpp?

- Apy: Collider bounds? Early matter domination?

nd
del scans™ over A, 2, ¥,V E, Apgp @
d the LISA miracle!

* TransitionListener & DarkSUSY [Ertas+
2109.06208, Bringmann+ 1802.03399]

il mo
e performed fu
NEE confirme
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Results of our scans

DESY

Kk
Qb 12

0.1 <g<,
1074 <1< 1072,
0.01 <y <0.7
MeV < v < TeV

0-6 102 102

fpeak [HZ] Q%e\?vlv{ h2
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Results of our scans

DESY

’U¢_[(}e\/]

Kk
Qb 12

L~

TR a — 0 . e~ o

Points with Qpyh* = 0.12 |}
correspond to fpeak =~ MHz |

®

. o > - =
Sl c . - 5 : S

0.1 <g<,
1074 <1< 1072,
0.01 <y<0.7,
MeV < v < TeV

W S R N
1 - [ i

I1:.TJ‘_H6I | I10_2I
Jpeak Hz|

.102.

10

~26 1021 10-16 10

peak
ngVV

}l2
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Now, you should be convinced

. Strong *

35% of points with
strong supercooling
and correct DM
abundance are
observable

DESY

| supercooling |

10-7 1070* 1071 102

fpeak [HZ]

0 08 1ot 1

k
el
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Conclusions

We are only at the dawn of GW cosmology, but
can already probe the pre-BBN universe!

PTAs could have observed a dark sector phase
transition or merging supermassive PBHSs

Dark sector phase transitions cannot be too
strong & quick: Need a < 0.1 and p/H < 10
or (better) quick decays (7, S 0.15s)

PBHs need to be clustered, no pu-distortions at
production

A future LISA detection of a GW background
would hint towards secluded DS freeze-out

DESY Carlo Tasillo — PhD defense, October 14th 2024 36
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Sensitivity for cosmic GW backgrounds

MeV GeV
II'IIIIIII" oy y. Sy I'l 'III’I‘
10—7
10~9 QH
- ’ NG15
=
: 107 LISA
C
= 1013
1071
0—17||mM SRR BENETETITT BRI E T : Lound T
1010 108 10 100 102 104
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Model details

DESY

1 :
L =|D,®|* - ZA;WA WY L 2 0*® — \(D* D)2
i t

+xtilxr + xRiDxr — y®x | xr — y®* xbxL

The tree-level scalar potential of our model has a minimum at vg = +4/p%/A. One can
hence expand the complex field as ® = (vg + ¢ + ip)/v/2, where ¢ and ¢ are real scalar
fields. In addition, the chiral fermions x; and xyr can be written as a Dirac fermion x. The
Lagragian in eq. (2.1) can thus be re-written as

S VPSP W T e
— gA [p0Hp — $pO*p — v ] + %&A;? + gsOQA;f + R0 A
e e At A A
+ixdx — myxx + gXA'v5x - %@Zx + i%w‘cfx ,
2
mé = —u® + 3)«02 = 2)\1)(2]5, mi = 0, m124, = g2v<2b, mi = %vg

Carlo Tasillo — PhD defense, October 14th 2024
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In any case: Novel PBH bounds.

PTA constraints on clustered PBHs

10Y

No clustering, 04. = 1

fpBH

1072 ¢ Clustered PBHs, 04, = 10°

In the shaded regions, the ;-]
GW signal exceeds the :
measured PTA signal.

10~ 4 S i e i e
10 10 10 10 10 10 10

mppu | M)
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GWB details

P*Qaw(f) = Rh*Q (HSWQY (é) _lyS(f)

a—+1 H
4/3 4/3
RhQ _ Q7h2 (hSM,O) (gtot,p) — 1653 - 10_5 ( 100 ) (gtot,p)
Rtot,p 9~,0 Rtot.p 100
3.38 /14+a

Y =min [1, 7gh H| ~ min |1, L3\ ke

o) = (fpiak)g (4 3(f7/fpeak)2)7/2

T B/HY [Giotp\1/2 { 100 \ /3
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Effect of Yukawa coupling on effective potential
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Gauge coupling ¢

Gauge coupling ¢

Grid scans over couplings

109

109

10—1

DESY

10—4 |

- Yukawa coupling y = 0

1— I

I LI I I I I LI I—|-
- Yukawa couplin .

gy=20

m

Quartic coupling A

" 103 10-2 10-%

- Yukawa coupling y = 0.5

unstable potential

-|— I II I I IIIIII—|-

- Yukawa coupling y = 0.5

unstable potential

10—?
Quartic coupling A

10~2

800

Gauge coupling ¢

Gauge coupling ¢

10—1 -
10—4

-y = 0.1,my/my

-

1077
Quartic coupling A

Carlo Tasillo — PhD defense, October 14th 2024

-y = 0.5, m¢/my

unstable potential

1— I I I IIIIII
-y = 0.5, m4r/my

101

1072 104

1077
Quartic coupling A

T

43

AL [Ty,



Comparison with hot dark sector phase transition
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Evolution of energy densities
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Out-of-equilibrium fraction of the dark sector
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F(t) ~ exp (—0.346:B(t—tp_7')) — exp (_0.34eﬂ(t—tp)>
(4.6)
~ BrePtte) exp (—0.34e/3(t—tp)) < 0.3787.

Here, the last term follows by inserting the time at which F'(¢) peaks, which is found to be
~ t,—1.08/8. Alternatively, one can interpret F' as the volume fraction of a shell around the
bubbles with the width of the mean free path of the particles that just entered the bubbles.
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Dilution effect
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Effect of 4,,and ¢
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Temperature evolution in the dark sector
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Detection probabilities

Fraction of parameter points observable by LISA
SEWPT =1, Anp= 107° EEWPT =2, App= 10~

Full sample

First-order PT
First-order PT + relic density

Strong supercooling
Strong supercooling + relic density

0.1% 0.5%
0.8% 3%
3% 8%
10% 21%
35% 69%

Table 2. Fraction of parameter points that predict an observable GW signal for LISA after imposing
various selection requirements on the sample of points drawn from the parameter ranges discussed in

section 2.9.

DESY
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Bodeker-Moore criterion.
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A brief history of time
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A brief history of time.
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Possible cosmological sources of the PTA signal
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The impact of cosmic variance on PTA anisotropy searches.

Null distributions p-value
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2408.07741, Konstandin, Lemke, Mitridate, Perboni
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Gravitational waves from decaying sources in strong PTs

Qaw (k) = 3Taw Qaw (Hi/B)? K2, R.B S(kR.),

where S(k) denotes the shape function of the spectrum that is normalized to [ dInk S(k) = 1,
and Ki2nt is the integrated kinetic energy fraction K2 over ¢ = ¢33, such that it reduces to
K273 when K is constant, being 75 the GW source duration. Therefore, Eq. (5.1) is a
generalization of the parameterization used in the stationary UETC assumption previously
tested with numerical simulations [40, 50, 52] and usually assumed for sound-wave sourcing
of GWs [22, 51, 54, 59, 91, 92, 99] that predicts a linear growth with the GW source duration
when K does not decay with time.

The most robust results (i.e., an almost independent value of Qcw with the PT pa-
rameters) are obtained when the typical bubble separation R,, which determines the length
scale of fluid perturbations, is given by the front of the expanding bubbles [22]

(5.1)

BR, = (87)'/3 max(vy,cs) , (5.2)
where 1/ parameterizes the duration of the PT, vy is the wall velocity, and ¢ the speed of
sound. This way, the residual dependence on the wall velocity in Qgw is quite limited and

we estimate from our numerical simulations values for the GW efficiency Qgw ~ ©O(1072)
for a range of PTs [see Fig. 7 and Eq. (4.9)],

1.041981,  for a =0.0046;
10 Qew = { 1.64792% ) for a =0.05; (5.3)
3.111945 for a=0.5,

(14 Tow/ts) 720 =11
1—2b ’

K2 (b, Tsw) — K§ Bt (5.6)
when one uses the power-law fit for K () and assumes that the GW production roughly starts
at the time ¢, ~ 3 ~ 10 (note that the actual value of ty only appears as a consequence of
our particular fit). It is unclear what should be the final time of GW sourcing in these cases,
as the simulations seem to already be modelling the non-linear regime, so we leave 7 as a
free parameter. We note that this is an indication that the GW spectrum might still grow
once that non-linearities develop in the fluid, such that the use of Eq. (5.5) would in general
underestimate the GW production. We compare in Fig. 8 the numerical dependence of the
GW amplitude with the source duration 7sw found in the simulations to the one obtained
using Eq. (5.6), extending the analytical fit beyond the time when the simulations end.

As a final remark on the integrated GW amplitude, we note that so far Universe ex-
pansion has been ignored, which is not justified for long source durations. Taking into
account that the fluid equations are conformal invariant after the PT if the fluid is radiation-
dominated, we can apply the results from our fluid simulations in Minkowski space-time to
an expanding Universe, as long as the PT duration is short (8/H, > 1) even if the GW
source duration is not short (see discussion in Sec. 2.6). Then, as a proxy to estimate the
effect of the Universe expansion, we can use the following value for K2, [see Eq. (2.23)]

Ky — K To(7sw) (B/H.), (5.7)

which generalizes the suppression factor T = H,7sw/(1 + HyTsw) When the source does not
decay [89, 91] to any decay rate b using Eq. (2.24) for the presented power-law decay fit of
K (t). We also compare in Fig. 8 the expected evolution of the GW amplitude with the source

2409.03651, Caprini, Jinno, Konstandin, Roper Pol, Rubira, Stomberg

DESY
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We find that a PTA with the noise characteristics of the NANOGrav 15-year data set had only a
2% — 11% probability of detecting SMBHB-generated anisotropies, depending on the properties of
the SMBHB population. However, we estimate that for the IPTA DR3 data set these probabilities
will increase to 4% — 28%, putting more pressure on the SMBHB interpretation in case of a null
detection. We also identify SMBHB populations that are more likely to produce detectable levels
of anisotropies. This information could be used together with the spectral properties of the GWB

to characterize the SMBHB population.

2407.08705, Lemke, Mitridate, Gersbach
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Turn up the volume
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Turn up the volume
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Figure 5. Time evolution of the comoving energy densities pa® of the mediator species and the

SM radiation (top-left), the normalized scale factor a (top-right), the temperature Tsy; of the SM

bath (bottom-left), as well as its entropy Ssm/SSy; (bottom-right). The evolution can be divided into

5109 06208, Ertas Kahlhéfer CT the following phases: relativistic mediator (I), cannibalism (II), non-relativistic mediator (III), early
' ' ' matter domination (IV), entropy injection (V), and decay (VI). See text for details.
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Turn up the volume
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Turn up the volume.
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Do PTAs observe a dark sector phase transition?
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Do PTAs observe a dark sector phase transition?
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Number of effective degrees of freedom at BBN

e A 4/3
Py T Pextra = Neﬂ" X g (ﬁ) P (229)

such that the extra energy can be expressed as’

7 (43 N
Pextra = A Nefp X 3 (ﬁ) py where ANeg = Neg— Ngg -
(2.30)

2 1/6 7 /4 4/3
we () [raln) M

(Gamer)
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BBN limits on MeV-scale electromagnetic scalar decays
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Quo vadis pulsar timing?
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Polarization of a GW
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(b) cross mode (d) longitudinal mode (f) vector-y mode

[Stephen Taylor et al., 2019]
DESY Carlo Tasillo — PhD defense, October 14th 2024



Cosmological perturbation theory

2
A — 31 (& —HT) = 272 A@+ W)
Mp
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Conversion of different GW spectra
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NANOGrav 15yr new physics analysis.
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NANOGrav 15yr with BBN and CMB limits.
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First-order phase transitions vs. cross-overs
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Einstein Telescope science case.
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GW spectrum in characteristic strain.
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New phys
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Influence of eccentricity on SMBHB signals.
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NANOGrav 15yr data analysis
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Daisy-improved effective potential

SUMMARY Summing all discussed terms together, we obtain the one-
loop, daisy-resummed effective potential of the QFT defined by the
Lagrangian in eq. (4.6) |170] A2 g 3
wit ) © (3+12+4) d > A 49 d
52 = [ 3 dVew(¢) ld2VCW(¢)”
P=v4

26  do 2 d¢?

V;aﬂ'(qba Td) = Viree + VCW + Vet + Vi + Vdaisy (4-22)

with the individual contributions

mi(¢) |. m2(¢) l 1 dVew(¢) 1 d2VCW(¢)] i
— a LA and 0\ = - :
Vow(®)= Y, MamaTgy s |In =5~ —Cal, 200 dop 24 d¢? ||,
a=¢,p,A’,X i ¢ i (4.23)
VT = g S e J (ﬁﬁﬂfg) |
™ , d s above, n, are the dois ot the fields coupled to ¢, n, 1s +1 (— or
RO T g L e 1R ) As ab he dofs of the fields coupled to ¢, ng is +1 (1) f
T o 3/2 3/2 bosons (fermions), C, = 3/2 (5/6) are the renormalization constants for
Vaaisy (¢, Tq) = “1on Z 2 [(m% + Hb(Td)) — (m%) ] ; scalars and fermions (gauge bosons), and J,, are the thermal functions
b=¢,p,Ar, as defined in eq. (4.15).

2
Vet (¢) = —%cﬁz + %’\cﬁ“
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Computation of the bounce
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GWs from PBH mergers
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Expected number of PBH pairs contributing to GWB

_ I+ > 7 [de(2)]?
Nt = [0 [T ae g T R - 1)
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Evidence in favor of a stochastic GW background

THE ASTROPHYSICAL JOURNAL LETTERS, 951:L8 (24pp), 2023 July 1 Agazie et al.
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Figure 2. Bayes factors between models of correlated red noise in the NANOGrav 15 yr data set (see Section 5.3 and Appendix B). All models feature variable-vy
power laws. CURN” is vastly favored over IRN (i.e., we find very strong evidence for common-spectrum excess noise over pulsar intrinsic red noise alone); HD” is
favored over CURN’ (i.e., we find evidence for Hellings—Downs correlations in the common-spectrum process); dipole and monopole processes are strongly
disfavored with respect to CURN”; adding correlated processes to HD” is disfavored. While the interpretation of “raw” Bayes factors is somewhat subjective, they can
be given a statistical significance within the hypothesis-testing framework by computing their background distributions and deriving the p-values of the observed

factors, e.g., Figure 3.
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Modeling SMBHBs
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Abstract

The NANOGrav 15 yr data set shows evidence for the presence of a low-frequency gravitational-wave background
(GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the
signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the
Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both
the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model
variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the
importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while
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reasonable parameters are able to reproduce the 15 yr observations, the implied GWB amplitude necessitates either
a large number of parameters to be at the edges of expected values or a small number of parameters to be notably
different from standard expectations. While we are not yet able to definitively establish the origin of the inferred
GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for
confirming that SMBH binaries are able to form, reach subparsec separations, and eventually coalesce. As the
significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of

the GWB and allow for novel constraints on SMBH populations.
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Uncertainties of the GWB amplitude from SMBHBs.
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Continuous waves in the NANOGrav 15yr data set
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Figure 1. Savage-Dickey Bayes factors for the CW+CURN model vs. the CURN model as a function of frequency (black). Also shown are Bayes factors when
excluding PSR J1713+4-0747 (red, only computed for fow > 24 nHz) and Bayes factors based on a resampled posterior that takes into account the presence of HD
correlations in the common red noise process, i1.e., CW+HD vs. HD (orange, only computed for 2.1 nHz < fow < 5.9 nHz). Shaded regions show the 1o uncertainties.
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NANOGrav 15yr data limits on anisotropy
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Figure 11. Normalized spherical-harmonic coefficients C;/C, of the gravita-
tional-wave sky as produced by simulated populations of SMBHBs, filtered by
consistency with the 15 yr isotropic gravitational-wave background estimation
(Agazie et al. 2023b). The different colors correspond to individual harmonics
from [ =1 to [ = 6. The solid lines represent the median realization of the
median samples, and the shaded regions represent the 68% confidence intervals
across all samples’ median realizations. The circles connected by dashed lines
represent the Bayesian upper limits as in Figure 5.

Abstract

The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has reported evidence for the
presence of an isotropic nanohertz gravitational-wave background (GWB) in its 15 yr data set. However, if the
GWB is produced by a population of inspiraling supermassive black hole binary (SMBHB) systems, then the
background is predicted to be anisotropic, depending on the distribution of these systems in the local Universe and
the statistical properties of the SMBHB population. In this work, we search for anisotropy in the GWB using
multiple methods and bases to describe the distribution of the GWB power on the sky. We do not find significant
evidence of anisotropy. By modeling the angular power distribution as a sum over spherical harmonics (where the
coefficients are not bound to always generate positive power everywhere), we find that the Bayesian 95% upper
limit on the level of dipole anisotropy is (Cj—;/Ci—o) < 27%. This is similar to the upper limit derived under the
constraint of positive power everywhere, indicating that the dipole may be close to the data-informed regime. By
contrast, the constraints on anisotropy at higher spherical-harmonic multipoles are strongly prior dominated. We
also derive conservative estimates on the anisotropy expected from a random distribution of SMBHB systems
using astrophysical simulations conditioned on the isotropic GWB inferred in the 15 yr data set and show that this
data set has sufficient sensitivity to probe a large fraction of the predicted level of anisotropy. We end by
highlighting the opportunities and challenges in searching for anisotropy in pulsar timing array data.
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Different models for the GW spectrum from a FOPT

Contribution from bubble wall collisions
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