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Outline of this talk.

1. The PTA signal
2. The null hypothesis: black
hole mergers

3. Phase transitions vs.
precision cosmology

4. Primordial black holes
5. BSM or boring?

[DALL-E’s interpretation of this talk’s buzzwords]
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In case you haven’t heard the news.
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Pulsar timing arrays.

Millisecond pulsars emit radio pulses
with an extremely stable frequency
• GWs affect propagation time 
change observed pulse frequency

• PTAs monitor pulse frequency using
radio telescopes on Earth

• Fit pulse data with timing model
• Fourier decomposition of timing
residuals shows “red noise”, which
can be due to GWs
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How can we be sure it’s actually gravitational waves?
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Monopolar correlations,
e.g. clock errors

Dipolar correlations,
e.g. ephemeris errors

Quadrupolar correlations,
i.e. a GW background

Red noise spectra can have many sources:
• Pulsars: no common red noise, B < 10−12

• Clock errors: monopole, B < 10−8

• Ephemeris errors: dipole, B < 10−7

• GWs: Hellings-Downs curve, B = 200 − 1000
 Decisive evidence for GWs!
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Merging supermassive black hole binaries.

[Mayer et al., 0706.1562; NASA/CXC/A. Hobart]

• Expect supermassive black hole

mergers after galaxy mergers
• Galaxy mergers are messy
• The resulting GW predictions span
several orders of magnitude, but
can be well described by a power
law with amplitude A and slope γ:

hc(f ) ∝ A f
3−γ

2

 ΩGW(f ) ∝ A2 f 5−γ
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GW background from supermassive black hole binaries.

 If the only energy loss shrinking
binary orbit is through GWs: γ = 4.33

 Astrophysical simulations for realistic
BH populations: deviations from
γ = 4.33, A ' 10−16 ...−15

 But: observed GW spectrum indicates
lower γ and larger A?!

What other signal sources
are thinkable?

[Kelley et al., 1702.02180][NANOGrav collaboration, 2023]
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What do we know about the early

Universe?



What we know about our Universe.

[Pablo Carlos Budassi, 2020]

LCDM:

• 95% of ρtot is dark!?
• Not probed above MeV (= billion
Kelvin) temperatures...
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The Big Bang Nucleosynthesis and the CMB.

[Paul Frederik Depta, 2021]

[ESA and the Planck Collaboration, D. Ducros]

• Observations of primordial light
element abundances in good
agreement with standard BBN

• NBBN
eff = 2.898 ± 0.141 [Yeh, 2207.13133]

• N CMB
eff = 2.99 ± 0.17 [Planck, 1807.06209]

• Consistent with N SM
eff = 3.044 from 3

ν generations [Bennet, 2012.02726v3]

 Thermalized BSM species after BBN
are ruled out. But we have no
constraints before that.
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Gravitational waves from dark

sector phase transitions.



Cross-over and first-order phase transitions.
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A scalar field “rolls down” from φ = 0 to
φ = v, when the bath cools from high
temperatures to low temperatures.
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First-order phase transition

A scalar field tunnels to the true
potential minimum (φ 6= 0) to minimize

its action (∼ free energy).
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Gravitational waves from first-order phase transitions.

Bubbles of the new phase nucleate,
collide and perturb the plasma...

φ 6= 0

φ 6= 0
φ = 0
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... giving rise to a stochastic gravitational
wave background which can be observed.
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Parametrization of the GW signal.
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To fit the new pulsar timing data:
• Strong transitions, α ' ∆V

ρtot
≈ 1

• Slow transitions, β/H ≈ 10
• Percolation around T ≈ 10MeV

But there’s no SM phase
transition at 10MeV?!
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Let’s put the transition in a dark sector.

• Dark sector temperature ratio is crucial, TDS = ξDS TSM [Breitbach, 1811.11175]

• Potential dilution of the GW signal due to changed redshift history [CT, 2109.06208]

• Stable dark sector: additional DS energy density accelerates expansion and
changes early element abundances and CMB anisotropies through

∆Neff ≈ 6 ×
(
αtot +

1 + αtot
10

(
ξpercDS

)4
)

, ∆Neff < 0.22 @95% C.L.

• Decaying dark sector: Energy transfer to the SM plasma, changing element
abundances and CMB anisotropies. Constraints require τ < 0.1 s. [Depta, 2011.06519]
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The tension between PTAs, CMB and BBN.

NG12.5, sound waves, stable dark sector,
ignoring cosmological constraints

∆Neff > 0.22: excluded by
BBN and CMB at 95 % C.L.

β/H < 3: Super-Hubble bubbles

β/H < 10: GWB is overestimated
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• Performed fit of the pulsar data with
NANOGrav’s own code enterprise

� A good fit requires an enormous
reheating of the dark sector: ∆Neff
can grow arbitrarily large

� Bubble sizes would need to be
super-Hubble to be okay with ∆Neff
Causality � GW prediction �

 The tension cries for a
global fit
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Global fits kill stable dark sectors.

NG12.5, sound waves, stable dark sector, β/H > 1

NG12.5, sound waves, stable dark sector, β/H > 10

β/H < 3: Super-Hubble bubbles

β/H < 10: GWB is overestimated
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Global fit = compute global maximum of

Lglob(~θPSR, ~θPT) =
LPTA(~θPSR, ~θPT)× Lcosmo(∆Neff(~θPT))

Find:
• β/H > 1: would be a good fit, if the
GW spectrum were reliable

• β/H > 10: not having a phase
transition is better than violating
BBN and CMB bounds!
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Decays to the rescue.

NG12.5, sound waves, decaying dark sector

β/H < 3: Super-Hubble bubbles

β/H < 10: GWB is overestimated
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Decays save the fit!

They only need to happen before
neutrino decoupling, TSM & 2MeV,
corresponding to fast decays, τ . 0.1 s.
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The evidence for a dark sector phase transition.
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Merging primordial black holes.



Gravitational waves from primordial black hole mergers.

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

f [Hz]

10−10

10−9

10−8

10−7

10−6

10−5

h
2
Ω

G
W

(f
)

Lo
w
er
m

P
B
H

H
ig

he
r
f P

B
H

NANOGrav 15 yr

NANOGrav 12.5 yr

• Inflation leaves large super-Hubble
density perturbations

• Black holes form when these come
into causal contact again, long
before the death of the first stars

ΩGW(f ) =
f

ρcrit

∫ t0

0
dt

[
R(t) dEGW

dfr

]∣∣∣∣
fr=(1+z)f
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PBHs without clustering cannot explain the PTA data.

[CT et al., 2023]

• Scan over mPBH and fPBH
• Region favored by PTAs is excluded
by astrophysical bounds

• Crucial: exclude regions with small
merger numbers. (Atal et al. came
to the wrong conclusion [2012.14721].)

Homogeneously distributed
PBHs cannot explain the PTA

data!
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What is clustering?

δdc = 1: Poisson-distributed PBHs δdc = 1 +
δnlocPBH
n̄PBH � 1: Clustering

[Paul Frederik Depta, 2023] 20



Clustered PBHs can explain the PTA data.

[CT et al., 2023]

• Clustering increases the merger
rates, requiring less PBHs to explain
the signal: smaller fPBH

• Astrophysical bounds are dubious
• Colleagues from UChicago say that
µ-distortions can be circumvented
[2308.00756]

Clustered PBHs can explain
the PTA data!
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So... what is the source of the PTA

signal?



The evidence for new physics.

[NANOGrav collaboration, 2023]

• New physics matches
spectra better

• BSM + SMBHB has highest
Bayes factors

• We should perform
global fits, including
constraints & open
astrophysical parameters

Still: As soon as a single merger or strong anisotropy is found in the data, all
cosmological explanations will be dead.
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[image credit: Olena Shmahalo, NANOGrav]

Take-home messages.

• We are for the first time able to probe
the early Universe before BBN!

• Stable dark sector phase transition
explanations for PTA data are in tension
with precision cosmology.

• Decaying dark sectors are a viable
option and can compete with SMBHBs.

• Merging primordial black holes need to
be clustered: Stay tuned!
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Thank you very

much for your

attention!

Do you have any
questions?
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Backup slides.



A brief history of time: LCDM.
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Electromagnetic scalar decays at MeV temperatures.

[Depta et al., JCAP 04 (2021) 011]
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The out-of-equilibrium decay of a dark mediator.
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I Relativistic mediator
II Cannibalistic mediator
III Non-relativistic mediator
IV Early matter domination
V Entropy injection
VI Mediator decay
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How the choice of priors changes a Bayes factor.
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Why violins shouldn’t be used for fits including cosmological constraints.
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How the density contrast increases the merger rate
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−
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With:

• δdc'
nlocPBH
n̄locPBH

: Density contrast
• x, (y): comoving distance of (next-to-) nearest neighbor PBH
• x̃ : farthest comoving distance two PBHs can have
• τ̃ : Merger timescale 23
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