About me.

Carlo Tasillo
PhD student at DESY

Torsten B	ringmann, To		zalo, Felix Kahl	dark matter and g hoefer, Jonas Matusz		-	#1
🚨 pdf	☐ cite	claim				reference search	n → 0 citations
Do pulsar timing arrays observe merging primordial black holes? #2 Paul Frederik Depta (Heidelberg, Max Planck Inst.), Kai Schmidt-Hoberg (DESY), Pedro Schwaller (Mainz U., Inst. Phys. and U. Mainz, PRISMA), Carlo Tasillo (DESY) (Jun 30, 2023) e-Print: 2306.17836 [astro-ph.CO]							
🖟 pdf	☐ cite	daim claim				reference search	40 citations
Does NANOGrav observe a dark sector phase transition? Torsten Bringmann (Oslo U.), Paul Frederik Depta (Heidelberg, Max Planck Inst.), Thomas Konstandin (DESY), Kai Schmidt-Hoberg (DESY), Carlo Tasillo (DESY) (Jun 15, 2023) Published in: JCAP 11 (2023) 053 · e-Print: 2306.09411 [astro-ph.CO]							
[] pdf	€ DOI	☐ cite	claim			reference search	→ 44 citations
Fatih Erta	s (RWTH Aa	chen U.), Fe	ix Kahlhoefer (transitions in hot o RWTH Aachen U.), Ca 2109.06208 [astro-pl	ırlo Tasillo (RW	S TH Aachen U.) (Sep 1	#4 3, 2021)
[] pdf	∂ DOI	☐ cite	claim			reference search	→ 27 citations

My research in a nutshell.

Research questions What's the origin of the nHz gravitational waves? Astrophysics or the Big Bang? What's the origin of dark matter? Can it be produced in a phase transition? Will GW observatories help?

GW background from supermassive black hole binaries.

[NANOGrav collaboration, 2023]

- Expect supermassive black hole mergers after galaxy mergers
- Astrophysical simulations with realistic BH populations generate GW spectra that are in tension with the observed GW spectrum!

What other signal sources are thinkable?

Cross-over and first-order phase transitions.

A scalar field "rolls down" from $\phi=0$ to $\phi=v$, when the bath cools from high temperatures to low temperatures.

A scalar field tunnels to the true potential minimum ($\phi \neq 0$) to minimize its action (\sim free energy).

Gravitational waves from first-order phase transitions.

Bubbles of the new phase nucleate, collide and perturb the plasma...

... giving rise to a stochastic gravitational wave background which can be observed.

Global fits.

Global fit = compute global maximum of

$$\begin{split} \mathcal{L}_{\text{glob}}(\vec{\theta}_{\text{PSR}}, \vec{\theta}_{\text{PT}}) &= \\ \mathcal{L}_{\text{PTA}}(\vec{\theta}_{\text{PSR}}, \vec{\theta}_{\text{PT}}) \times \mathcal{L}_{\text{cosmo}}(\Delta N_{\text{eff}}(\vec{\theta}_{\text{PT}})) \end{split}$$

Find:

- $\beta/H > 1$: would be a good fit, if the GW spectrum were reliable
- $\beta/H > 10$: \mathcal{L}_{glob} starts preferring to not have a phase transition over violating BBN and CMB bounds!

Decays to the rescue.

Decays save the fit...

... since more energy can be used to reheat the DS and emit GWs. They only need to happen before neutrino decoupling, $T_{\rm SM}\gtrsim 2\,{\rm MeV}$, corresponding to fast decays, $\tau\lesssim 0.1\,{\rm s}$.

The evidence for a dark sector phase transition.

Take-home messages.

- We are for the first time able to probe the early Universe before BBN!
- Stable dark sector phase transition explanations for PTA data are in tension with precision cosmology.
- Decaying dark sectors can compete with the SMBHB explanation and can even fit the data better
- Stay tuned for a follow-up incl. the latest PTA data

Thank you very much for your attention!

Do you have any questions?

How can we be sure it's actually gravitational waves?

Red noise spectra can have many sources:

- Pulsars: no common red noise, $\mathcal{B} < 10^{-12}$
- Clock errors: monopole, $\mathcal{B} < 10^{-8}$
- Ephemeris errors: dipole, $\mathcal{B} < 10^{-7}$
- \cdot GWs: Hellings-Downs curve, $\mathcal{B}=200-1000$

A brief history of time: LCDM.

Electromagnetic scalar decays at MeV temperatures.

[Depta et al., JCAP 04 (2021) 011]

The out-of-equilibrium decay of a dark mediator.

Energy densities $\rho_i(t) \stackrel{\text{sets}}{\leadsto} \text{Scale factor}$ $a(t) \stackrel{\text{sets}}{\leadsto} \text{Temperatures } T_{\text{SM/DS}}(t) \stackrel{\text{set}}{\leadsto}$ Particle content $\stackrel{\text{sets}}{\leadsto} \rho_i(t) \stackrel{\text{sets}}{\leadsto} \dots$

Six phases:

- I Relativistic mediator
- II Cannibalistic mediator
- III Non-relativistic mediator
- IV Early matter domination
- V Entropy injection
- VI Mediator decay

How the choice of priors changes a Bayes factor.

Why violins shouldn't be used for fits including cosmological constraints.

