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Outline of this talk

1 The Early Universe
2 Pulsar timing arrays

3 Gravitational waves from dark
sector phase transitions

4 The tension between BBN, CMB
and NANOGrav

5 Outlook: New data in ~ 2 weeks!

[Camille Flammarion, 1888]



What do we know about
the Early Universe?



What we know about our Universe.

LCDM:
Isotropic and homogeneous
Expands since 13.8 billion years
95% is dark!?

Not probed above O(few) MeV
temperatures...

[Pablo Carlos Budassi, 2020]
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The Big Bang Nucleosynthesis and the CMB

10!

- Observations of primordial light
element abundances in good
agreement with standard BBN

: NST:PN = 2.898 £ 0.141 rven, 22013133

Nuclear abundances

T [MeV]

[Paul Frederik Depta, 2021]



The Big Bang Nucleosynthesis and the CMB

- Observations of primordial light
element abundances in good
agreement with standard BBN

- NEN = 2.898 + 0.141 1ven 20710

e

- NG'® =2.99 £ 0.17 nce 070000

e

- Consistent with N3} = 3.044 from 3
v generations [Bennet, 2012.02726v3]

[ESA and the Planck Collaboration, D. Ducros]



The Big Bang Nucleosynthesis and the CMB.

Observations of primordial light
element abundances in good
agreement with standard BBN

NEBN = 2.898 + 0.141 e 011
NGB =2.99 4 0.17 (pinc 1s0700200]

Consistent with N3 = 3.044 from 3
v generatlons [Bennet, 2012.02726v3]

Cosmologies with extra species at
T < MeV are severely constrained.
What about earlier times?

[ESA and the Planck Collaboration, D. Ducros]



Gravitational waves as a “new” messenger

- LIGO + Virgo observed O(100)
mergers since 2015 tewrcs)
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[LIGO, Virgo & KAGRA Collaboration, 2020]



Gravitational waves as a “new” messenger
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- LIGO + Virgo observed O(100) § — Horizon
mergers since 2015 (eurcs] [ 20% detected
- The Einstein Telescope will be ol
able to probe mergers during 5 g
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[Maggiore et al., JCAP 03, 050 (2020)]



Gravitational waves as a “new” messenger.

LIGO + Virgo observed O(100)
mergers since 2015 tewrcs)

The Einstein Telescope will be
able to probe mergers during
the Dark Ages (~ PBHs?)

LISA will be able to test
electroweak symmetry breaking
(~ Baryogenesis?)

[University of Florida, Simon Barke (CC BY 4.0)]



Gravitational waves as a “new” messenger

- LIGO + Virgo observed O(100)
mergers since 2015 tewrcs)

- The Einstein Telescope will be
able to probe mergers during
the Dark Ages (~ PBHs?)

- LISA will be able to test
electroweak symmetry breaking
(~ Baryogenesis?)
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- PTAs already detected Frequeney /e
Something that mlght be d [adapted from gwplotter.com]
stochastic GW background!



Pulsar timing arrays.



Pulsar timing arrays.

Millisecond pulsars emit radio pulses
with an extremely stable frequency

GWs affect propagation time ~
change observed pulse frequency

PTAs monitor pulse frequency using
radio telescopes on Earth
Fit pulse data with timing model

Fourier decomposition of timing
residuals shows “common red
noise” which could be due to GWs

[Tonia Klein, NANOGrav] 7



The measured PTA signal
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The five lowest Fourier modes agree with a power-law “common red signal’,
described by an amplitude Acp and a spectral index ~cp.



The same signal was also measured by EPTA, PPTA and IPTA
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Is it actually a GW background or just noise

Red noise spectra can have many sources:

oo - Pulsar mismodelling: no correlation
Monopolar correlations, B
g o o - Clock errors: monopole, B =10"%3 &
f 0.50 . . 94 @
2 o - Ephemeris errors: dipole, B =10 @
3 0w - GWs: Hellings-Downs curve, B = 10%%* ()
£ 0P e ~+ No decisive evidence for GWs... yet.
5 —0.50 -
E —0.75 1 Dipolar correlations,
1004 e.g. ephemeris errors *

* b *
0 i 5 ST" T A\ 1 \ *
Pulsar separation angle ¢ } } W }
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What are possible GW sources”

The signal is consistent with a single power
law at nHz frequencies. Likely explanation:

Astrophysics: Inspiral of supermassive
black hole binaries, vcp = 4.33

[Mayer et al., 0706.1562]
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What are possible GW sources

The signal is consistent with a single power

law at nHz frequencies. Likely explanation: -13.5
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What are possible GW sources

The signal is consistent with a single power
law at nHz frequencies. Likely explanation:

Frequencys~']
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~ Astrophysics: Inspiral of supermassive PR | :_‘_‘_'j'?,,m
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Alternative cosmological sources include g
- Primordial black holes %02 161 00

GW Frequency [yr!]

- Cosmic strings

[Kelley et al., 1702.02180; adapted by Andrea Mitridate]
- First-order phase transitions
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Gravitational waves from dark
sector phase transitions.




Cross-over and first-order phase transitions

Cross-over phase transition

/

Vet (¢) — Verz (0)

A scalar field “rolls down” from ¢ = 0 to
¢ = v, when the bath cools from high
temperatures to low temperatures.

First-order phase transition

Vet (6) — Ve (0)

A scalar field tunnels to the true
potential minimum (¢ # 0) to minimize

its action (~ free energy).
12



Gravitational waves from first-order phase transitions

Bubbles of the new phase nucleate,
collide and perturb the plasma...

LISA
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Parametrization of the GW signal
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Let’s put the transition in a dark sector

- Dark sector temperature ratio is crucial, Tps = Eps Tsm #reitvach, 1117175]
- Bubble wall dynamics are independent from SM plasma
- Potential dilution of the GW signal due to changed redshift history icr 2000509

- Stable dark sector: additional DS energy density accelerates expansion and
changes early element abundances and CMB anisotropies through

1+ aiot
10

(682“)4) . ANg < 0.22 @95 % C.L.

ANess = 6 X (atot +

- Decaying dark sector: Energy transfer to the SM plasma, changing element
abundances and CMB anisotropies. ivept, 20106591
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The tension between BBN,
CMB and NANOGrav.




u cannot ignore the tension

Sound waves, stable dark sector,
ignoring cosmological constraints
ANy > 022 excluded by
" BBN and CMB at 95% C.L.
| 3/H < 3: No percolation
B/H < 10: GWB is overestimated
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But you can circumvent the tension

If the dark sector is allowed to decay, the
tension with cosmology can be
circumvented.

We find that the decays need to happen
at Tsy = 2MeV (just before neutrino
decoupling), corresponding to decays
happening with 7 < 0.1s.
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How likely is a dark sector phase transition explanation?

Bayes factor

?Bayes factors for a phase transition vs. only pulsar-intrinsic red noise
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Conclusions.




- We are for the first time able to g
the early Universe befor
- Stable dark sector phase tra
explanations for PTA data are |
with precision cosmology.

- Decaying dark sectors are a viable
option and can compete with SMBHBs.

- Look out for coming data releases that
could confirm quadrupole correlation of
the “common red signal” in ¢ ~ 2 weeks!

[image credit: Olena Shmahalo, NANOGrav]




Thank you very 2 ‘

much for your
attention!




Backup slides.




Electromagnetic scalar decays at MeV temperatures
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The out-of-equilibrium decay of a dark mediator
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How the choice of priors changes a Bayes factor

Dependence of the Bayes factor on the Agypup prior range

Decrease maximal AsypuB

44 Increase minimal AsypuB
Posterior distribution of Asypup
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Why violins shouldn’t be used for fits including cosmological constraints

Posterior distribution of GWB spectra for different 3/H priors

NANOGrav 12.5yr
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