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Outline of this talk.

1 The Early Universe
2 Pulsar timing arrays
3 Gravitational waves from dark
sector phase transitions

4 The tension between BBN, CMB
and NANOGrav

5 Outlook: New data in ≈ 2 weeks!

[Camille Flammarion, 1888]
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What do we know about

the Early Universe?



What we know about our Universe.

[Pablo Carlos Budassi, 2020]

LCDM:

• Isotropic and homogeneous
• Expands since 13.8 billion years
• 95% is dark!?
• Not probed above O(few)MeV
temperatures...
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A brief history of time: LCDM.
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The Big Bang Nucleosynthesis and the CMB.

[Paul Frederik Depta, 2021]

[ESA and the Planck Collaboration, D. Ducros]

• Observations of primordial light
element abundances in good
agreement with standard BBN

• NBBN
eff = 2.898 ± 0.141 [Yeh, 2207.13133]

• N CMB
eff = 2.99 ± 0.17 [Planck, 1807.06209]

• Consistent with N SM
eff = 3.044 from 3

ν generations [Bennet, 2012.02726v3]

 Cosmologies with extra species at
T . MeV are severely constrained.
What about earlier times?
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Gravitational waves as a “new” messenger.

• LIGO + Virgo observed O(100)
mergers since 2015 [GWTC3]

• The Einstein Telescope will be
able to probe mergers during
the Dark Ages ( PBHs?)

• LISA will be able to test
electroweak symmetry breaking
( Baryogenesis?)

• PTAs already detected
something that might be a
stochastic GW background!

[LIGO, Virgo & KAGRA Collaboration, 2020]1 10 100 1000 10 000
Total source-frame mass [M�]

0.1

1

10

100

R
ed

sh
if

t

Horizon
10% detected
50% detected

2019–02–05

aLIGO
ET
CE

[Maggiore et al., JCAP 03, 050 (2020)][University of Florida, Simon Barke (CC BY 4.0)]

[adapted from gwplotter.com]
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Pulsar timing arrays.



Pulsar timing arrays.

[Tonia Klein, NANOGrav]

Millisecond pulsars emit radio pulses
with an extremely stable frequency
• GWs affect propagation time 
change observed pulse frequency

• PTAs monitor pulse frequency using
radio telescopes on Earth

• Fit pulse data with timing model
• Fourier decomposition of timing
residuals shows “common red
noise”, which could be due to GWs
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The measured PTA signal.

[adapted from NANOGrav, 2009.04496]

The five lowest Fourier modes agree with a power-law “common red signal”,
described by an amplitude ACP and a spectral index γCP.
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The same signal was also measured by EPTA, PPTA and IPTA.
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Is it actually a GW background or just noise?
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Monopolar correlations,
e.g. clock errors

Dipolar correlations,
e.g. ephemeris errors

Quadrupolar correlations,
i.e. a GW background

Red noise spectra can have many sources:
• Pulsar mismodelling: no correlation
• Clock errors: monopole, B = 10−2.3

• Ephemeris errors: dipole, B = 10−2.4

• GWs: Hellings-Downs curve, B = 100.64

 No decisive evidence for GWs... yet.
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What are possible GW sources?

The signal is consistent with a single power
law at nHz frequencies. Likely explanation:
 Astrophysics: Inspiral of supermassive

black hole binaries, γCP = 4.33

 But: Amplitude too large by O(10)?!

Alternative cosmological sources include
• Primordial black holes
• Cosmic strings
• First-order phase transitions

[Mayer et al., 0706.1562]

[adapted from IPTA, 2201.03980][Kelley et al., 1702.02180; adapted by Andrea Mitridate]

11



What are possible GW sources?

The signal is consistent with a single power
law at nHz frequencies. Likely explanation:
 Astrophysics: Inspiral of supermassive

black hole binaries, γCP = 4.33
 But: Amplitude too large by O(10)?!

Alternative cosmological sources include
• Primordial black holes
• Cosmic strings
• First-order phase transitions

[Mayer et al., 0706.1562]

[adapted from IPTA, 2201.03980][Kelley et al., 1702.02180; adapted by Andrea Mitridate]

11



What are possible GW sources?

The signal is consistent with a single power
law at nHz frequencies. Likely explanation:
 Astrophysics: Inspiral of supermassive

black hole binaries, γCP = 4.33
 But: Amplitude too large by O(10)?!

Alternative cosmological sources include
• Primordial black holes
• Cosmic strings
• First-order phase transitions [Mayer et al., 0706.1562]

[adapted from IPTA, 2201.03980][Kelley et al., 1702.02180; adapted by Andrea Mitridate]

11



Gravitational waves from dark

sector phase transitions.



Cross-over and first-order phase transitions.
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A scalar field “rolls down” from φ = 0 to
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First-order phase transition

A scalar field tunnels to the true
potential minimum (φ 6= 0) to minimize

its action (∼ free energy).
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Gravitational waves from first-order phase transitions.

Bubbles of the new phase nucleate,
collide and perturb the plasma...
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... giving rise to a stochastic gravitational
wave background which can be observed.
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Parametrization of the GW signal.
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For signals that fit NANOGrav:
• Strong transitions, high α

• Slow transitions, low β/H
• Percolation around T ' O(MeV) ?!
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Let’s put the transition in a dark sector.

• Dark sector temperature ratio is crucial, TDS = ξDS TSM [Breitbach, 1811.11175]

• Bubble wall dynamics are independent from SM plasma
• Potential dilution of the GW signal due to changed redshift history [CT, 2109.06208]

• Stable dark sector: additional DS energy density accelerates expansion and
changes early element abundances and CMB anisotropies through

∆Neff ≈ 6 ×
(
αtot +

1 + αtot
10

(
ξpercDS

)4
)

, ∆Neff < 0.22 @95% C.L.

• Decaying dark sector: Energy transfer to the SM plasma, changing element
abundances and CMB anisotropies. [Depta, 2011.06519]
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The tension between BBN,

CMB and NANOGrav.



You cannot ignore the tension.

Sound waves, stable dark sector,
ignoring cosmological constraints

∆Neff > 0.22: excluded by
BBN and CMB at 95 % C.L.

β/H < 3: No percolation

β/H < 10: GWB is overestimated
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But you can circumvent the tension.

Sound waves, decaying dark sector

β/H < 3: No percolation

β/H < 10: GWB is overestimated

100

101

102

103

β
/H

10−4

10−3

10−2

10−1

100

T
p

er
c

S
M
/G

eV

10−3

10−2

10−1

100

101

ξp
er

c
D

S

10−3 10−2 10−1 100 101

αtot

10−6

10−4

10−2

100

102

τ φ
/

s

100 101 102 103

β/H
10−4 10−3 10−2 10−1 100

T perc
SM /GeV

10−3 10−2 10−1 100 101

ξperc
DS

10−6 10−4 10−2 100 102

τφ / s

If the dark sector is allowed to decay, the
tension with cosmology can be
circumvented.
We find that the decays need to happen
at TSM & 2MeV (just before neutrino
decoupling), corresponding to decays
happening with τ . 0.1 s.
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How likely is a dark sector phase transition explanation?
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Conclusions.



[image credit: Olena Shmahalo, NANOGrav]

Take-home messages.

• We are for the first time able to probe
the early Universe before BBN!

• Stable dark sector phase transition
explanations for PTA data are in tension
with precision cosmology.

• Decaying dark sectors are a viable
option and can compete with SMBHBs.

• Look out for coming data releases that
could confirm quadrupole correlation of
the “common red signal” in t ∼ 2 weeks!
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Thank you very

much for your

attention!

Do you have any
questions?
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Backup slides.



Electromagnetic scalar decays at MeV temperatures.

[Depta et al., JCAP 04 (2021) 011]
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The out-of-equilibrium decay of a dark mediator.

102

105

108

1011

III IV V VIIII

ρ a3 / GeV4

ρmed

ρrad

100

102

104

106

108
III IV V VIIII

a/acd

rad. dom.

10−9 10−6 10−3 100

t/τ

10−3

10−1

101

103
III IV V VIIII

TSM / GeV

ΛCDM

10−9 10−6 10−3 100

t/τ

100

101

102

III IV V VIIII

SSM/S
cd
SM

Energy densities ρi(t)
sets
 Scale factor

a(t) sets
 Temperatures TSM/DS(t)

set
 

Particle content sets
 ρi(t)

sets
 ...

Six phases:

I Relativistic mediator
II Cannibalistic mediator
III Non-relativistic mediator
IV Early matter domination
V Entropy injection
VI Mediator decay
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How the choice of priors changes a Bayes factor.
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Why violins shouldn’t be used for fits including cosmological constraints.
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