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[Camille Flammarion, 1888]
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What do we know about

the Early Universe?



What we know about our Universe.

[Pablo Carlos Budassi, 2020]

LCDM:

• Isotropic and homogeneous
• Expands since 13.8 billion years
• 95% is dark!?
• Not probed above MeV
temperatures...
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A brief history of time: LCDM.
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The Big Bang Nucleosynthesis and the CMB.

[Paul Frederik Depta, 2021]

[ESA and the Planck Collaboration, D. Ducros]

• Observations of primordial light
element abundances in good
agreement with standard BBN

• NBBN
eff = 2.898 ± 0.141 [Yeh, 2207.13133]

• N CMB
eff = 2.99 ± 0.17 [Planck, 1807.06209]

• Consistent with N SM
eff = 3.044 from 3

ν species [Bennet, 2012.02726v3]

 Cosmologies with extra species at
T . MeV are constrained. What
about earlier times?
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Gravitational waves as a “new” messenger.

• LIGO + Virgo observed 90
mergers since 2015 [GWTC3]

• Einstein Telescope to be built
soon: will be able to probe
mergers during the Dark Ages (!)

• LISA will be able to test EWSB
• PTAs already detected
something that might be a
stochastic GW background!

[LIGO, Virgo & KAGRA Collaboration, 2020]1 10 100 1000 10 000
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Pulsar timing arrays.



Pulsar timing arrays.

[Tonia Klein, NANOGrav]

Millisecond pulsars emit radio pulses
with an extremely stable frequency
• GWs affect propagation time 
change observed pulse frequency

• PTAs monitor pulse frequency using
radio telescopes on Earth

• Fit pulse data with timing model
• Fourier decomposition of timing
residuals shows “common red
noise”, which could be due to GWs
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The measured PTA signal.

[NANOGrav, 2009.04496]

log10 CP delay [s] = log10

√
H 2

100
8π4

h2Ωgw(f )
f 5 tobs s2

The five lowest Fourier modes agree
with a “red” power-law GW
background h2Ωgw(f ) ∝ A2

CP f −γCP/2
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Was it actually a GW background or just noise?
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• GWs: Hellings-Downs curve
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The same signal was also measured by EPTA, PPTA and IPTA.
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What are possible GW sources?

[IPTA, 2201.03980]

The signal is consistent with a single power
law at nHz frequencies. Likely explanation:
 Astrophysics: Supermassive black hole

binaries inspiraling, γCP = 4.33

Possible cosmological sources include
• Primordial black holes
• Cosmic strings
• A first-order phase transition
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Gravitational waves from dark

sector phase transitions.



Cross-over and first-order phase transitions.
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its action (∼ free energy).
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Gravitational waves from first-order phase transitions.

Bubbles of the new phase nucleate,
collide and perturb the plasma...
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Parametrization of the GW signal.

α

β/H

T perc
SM

[Adapted from NANOGrav, 2104.13930]

Bubble walls

Sound waves

PT in DS
might be more
realistic...

h2Ωsw,bwGW (f ) ' 10−6
(

α

α+ 1

)2(H
β

)1,2
S
(

f
fpeak

)
with fpeak ' 0.1Hz β

H
Tperc
SM
MeV

For signals that fit NANOGrav:
• Strong transitions, high α

• Slow transitions, low β/H
• Percolation around Tperc

SM ' O(MeV):
very low for visible sector transition
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What changes for transitions in a dark sector?

• Transition can happen in sector with distinct temperature TDS = ξDS TSM

• Bubble wall dynamics depend on αDS = ∆θ/ρDS ' αtot/ξ
4
DS and not on αtot

• Potential dilution of the GW signal due to matter domination [CT, 2109.06208]

• Stable dark sector: additional DS energy density contributes to Neff as

∆Neff ' 6

(
αtot +

gpercDS
gpercSM

(αtot + 1)
(
ξpercDS

)4
)

, ∆Neff < 0.14 @95% C.L.

• Decaying dark sector: Energy transfer to the SM plasma, potentially during
BBN. We assume: Decays of a 5MeV dark Higgs.
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The tension between BBN

and NANOGrav.



Stable dark sector, transition time scale prior: β/H > 1
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Stable dark sector, transition time scale prior: β/H > 5
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Stable dark sector, transition time scale prior: β/H > 10
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Decaying dark sector
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Summary.

• Stable DSPT explanations for
NANOGrav are in tension with BBN

• The tension is larger for quicker PTs,
as αtot would need to be larger

• GWBs from sound waves are more
plausible then from bubble walls

• If the transitioning DS can dump its
energy into the SM, the tension
decreases
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Conclusions.



Conclusions and outlook.

[Camille Flammarion, 1888]

• BBN and CMB put strong constraints on
beyond-LCDM cosmology, including phase
transitions in dark sectors

• Early Universe can be tested at times
before BBN using GWs

• PTAs found a “common red signal”, which
would require Tperc < 10MeV if from visible
sector phase transition

• Dark sector phase tansitions can explain
NANOGrav, if β/H is (suspiciously) low or
the dark sector decays fast enough after the
transition!
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Muito obrigado

pela atenção!

Você tem alguma
pergunta?

21



Backup slides.



Electromagnetic scalar decays at MeV temperatures.

[Depta et al., JCAP 04 (2021) 011]
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The out-of-equilibrium decay of a dark mediator.
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Six phases:

I Relativistic mediator
II Cannibalistic mediator
III Non-relativistic mediator
IV Early matter domination
V Entropy injection
VI Mediator decay
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