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What do we know about
the Early Universe?



What we know about our Universe.

LCDM:
Isotropic and homogeneous
Expands since 13.8 billion years
95% is dark!?

Not probed above MeV
temperatures...

[Pablo Carlos Budassi, 2020]
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The Big Bang Nucleosynthesis and the CMB

10!

- Observations of primordial light
element abundances in good
agreement with standard BBN

: NST:PN = 2.898 £ 0.141 rven, 22013133

Nuclear abundances

T [MeV]

[Paul Frederik Depta, 2021]



The Big Bang Nucleosynthesis and the CMB

[ESA and the Planck Collaboration, D. Ducros]

- Observations of primordial light

element abundances in good
agreement with standard BBN

- NEN = 2.898 + 0.141 1ven 20710

e

- NG'® =2.99 £ 0.17 nce 070000
- Consistent with N3} = 3.044 from 3

v species [Bennet, 2012.02726v3]



The Big Bang Nucleosynthesis and the CMB.

Observations of primordial light
element abundances in good
agreement with standard BBN

NEBN = 2.898 + 0.141 e 011
NGB =2.99 4 0.17 (pinc 1s0700200]

Consistent with N3 = 3.044 from 3
v speaes [Bennet, 2012.02726v3]

Cosmologies with extra species at
T < MeV are constrained. What
about earlier times?

[ESA and the Planck Collaboration, D. Ducros]



Gravitational waves as a “new” messenger

- LIGO + Virgo observed 90
mergers since 2015 ewrcs)
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[LIGO, Virgo & KAGRA Collaboration, 2020]



Gravitational waves as a “new” messenger
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- LIGO + Virgo observed 90
mergers since 2015 ewrcs)
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[Maggiore et al., JCAP 03, 050 (2020)]



Gravitational waves as a “new” messenger.

LIGO + Virgo observed 90
mergers since 2015 ewrcs)

Einstein Telescope to be built
soon: will be able to probe
mergers during the Dark Ages (1)

LISA will be able to test EWSB

[University of Florida, Simon Barke (CC BY 4.0)]



Gravitational waves as a “new” messenger
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- PTAs already detected 10'—9 10I—8
something that might be a Frequency [Hz]

stochastic GW background!

[IPTA, 2201.03980]



Pulsar timing arrays.



Pulsar timing arrays.

Millisecond pulsars emit radio pulses
with an extremely stable frequency

GWs affect propagation time ~
change observed pulse frequency

PTAs monitor pulse frequency using
radio telescopes on Earth
Fit pulse data with timing model

Fourier decomposition of timing
residuals shows “common red
noise” which could be due to GWs

[Tonia Klein, NANOGrav] 7



The measured PTA signal
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The five lowest Fourier modes agree
with a “red” power-law GW
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Was it actually a GW background or just noise?

Pulsar correlation function I'gp(¢)
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Red noise spectra can have many sources:

- Pulsar mismodelling: no correlation

- Clock errors: monopole

- Solar system ephemeris errors: dipole
- GWSs: Hellings-Downs curve
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The same signal was also measured by EPTA, PPTA and IPTA
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What are possible GW sources?

The signal is consistent with a single power

-135 . . .
140 law at nHz frequencies. Likely explanation:

e ~ Astrophysics: Supermassive black hole
s} ) . . . . .
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Gravitational waves from dark
sector phase transitions.




Cross-over and first-order phase transitions

Cross-over phase transition

/

Vet (¢) — Verz (0)

The scalar field “rolls down” from ¢ = 0
to ¢ = v, when the bath cools from high
temperatures to low temperatures.

First-order phase transition

Vet (6) — Ve (0)

The scalar field tunnels to the true
potential minimum (¢ # 0) to minimize

its action (~ free energy).
12



Gravitational waves from first-order phase transitions

Bubbles of the new phase nucleate,
collide and perturb the plasma...
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.. giving rise to a stochastic gravitational
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Parametrization of the GW signal
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fpeak H MeV

For signals that fit NANOGrav:
- Strong transitions, high o
- Slow transitions, low 3/ /1
- Percolation around 75" ~ O(MeV):
very low for visible sector transition
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Parametrization of the GW signal
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Parametrization of the GW signal
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- Slow transitions, low 3/ H
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very low for visible sector transition

-2
102 107! 11074 1072 1 1021072 107! 1 10
Hp T, [GeV] o

[Adapted from NANOGrav, 2104.13930] 14



What changes for transitions in a dark sector?

- Transition can happen in sector with distinct temperature Tps = &ps Tsm
- Bubble wall dynamics depend on aps = A/ pps ~ atot/gés and not on aiot
- Potential dilution of the GW signal due to matter domination icr »os0602]

- Stable dark sector: additional DS energy density contributes to Ngg as

perc

ANef ~ 6 <atot + % (oot + 1) (ggng)‘*) . ANgg <0.14@95% C.L
Jsm

- Decaying dark sector: Energy transfer to the SM plasma, potentially during
BBN. We assume: Decays of a 5MeV dark Higgs.

15



The tension between BBN
and NANOGrav.




Stable dark sector, transition time scale prior: 5/H > 1
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Stable dark sector, transition time scale prior: 5/H > 5

NANOGrav
10°°

10-10

h?Qaw(f

10-11

10-12

:::::

10-13

®

1071 ,

xxxxx

f/ Hz 1000

,,,,,

erc erc aar
Qtot ﬁ/H TSpM 585 A Nef

AN

~0.05 5—10 ~8MeV <03 ~025 <




Stable dark sector, transition time scale prior: 5/H > 10
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Decaying dark sector
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- No strong preference for tiny 8/H

ot UP to O(1) possible, as long as
DS decays before BBN, 7, < 0.1

Tspfarc 2 2 MeV iai and korwar, 210914765]
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- Stable DSPT explanations for
NANOGrav are in tension with BBN

- The tension is larger for quicker PTs,
as aror would need to be larger

- GWBs from sound waves are more
plausible then from bubble walls

- If the transitioning DS can dump its
energy into the SM, the tension
decreases

Bayes factor
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Conclusions.




Conclusions and outlook

[Camille Flammarion, 1888]

- BBN and CMB put strong constraints on

beyond-LCDM cosmology, including phase
transitions in dark sectors

- Early Universe can be tested at times

before BBN using GWs

- PTAs found a “common red signal”’, which

would require Tperc < 10MeV if from visible
sector phase transition

- Dark sector phase tansitions can explain

NANOGrav, if 3/ H is (suspiciously) low or
the dark sector decays fast enough after the
transition!

21



Muito obrigado
pela atencao!

[5fe
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Backup slides.




Electromagnetic scalar decays at MeV temperatures
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The out-of-equilibrium decay of a dark mediator
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