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Why consider gravitational waves from hot dark sector phase transitions?

[Pablo Carlos Budas

How can we observe what happened
beyond the surface of last scattering?

~ Need messenger that comes
straight from the Early Universe:
Gravitational waves



Why consider gravitational waves from hot dark sector phase transitions?

Bubbles of the new phase PLI sensitivities h2 Qpp(f) and signal k% Qgw (f)
nucleate and eventually collide... A I [ — "BBO  — ET
—— DECIGO — LISA — Signal
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... giving rise to a stochastic gravitational wave
background.



Why consider gravitational waves from hot dark sector phase transitions?

Dark matter

Baryonic matter

69%
Dark energy

~ What kind of dark sector could
produce observable GW signals?

Dark sector: particle bath without
thermal contact to SM particles:

Tps = & Tsm

Breitbach et al. [1811.11175] showed that
cold (¢ < 1) dark sectors produce weak
signals, since

Latent heat 4
o = . X
Plasma energy density




Why consider gravitational waves from hot dark sector phase transitions?

Dark sector: particle bath without

Dark matter thAarmAal ~rAntArt +A CAA harticleS'

Can hot (¢ > 1) dark sector phase transitions

emit strong GW signals?
'5] showed that

What happens when the dark sector » produce weak
finally decays to SM particles?

~ What kind o " at o €4
produce observable GW signals? Plasma energy density

Dark energy




Long-lived dark sector evolution after a phase transition
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Long-lived dark sector evolution after a phase transition

Standard Model

bath
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Long-lived dark sector evolution after a phase transition

Standard Model

bath
Dark Sector Lightest dark dominates
sector species energy
bath survives density
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Transiton decoupling
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Long-lived dark sector evolution after a phase transition

Standard Model

bath dilutes
Dark Sector Lightest dark dominates
sector species energy decays
bath survives density
| | | | |
[ | I ) .] I Time
Phase Chemical Early matter Dilution by
Transiton decoupling domination mediator decay



Long-lived dark sector evolution after a phase transition

Standard Model ) Standard
bath LS evolution

Dark Sector Lightest dark dominates
sector species energy decays
bath survives density
| | I | | _
] | | ! ] Time
Phase Chemical Early matter Dilution by BEN
Transiton decoupling domination  mediator decay



The out-of-equilibrium decay of a dark mediator
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The out-of-equilibrium decay of a dark mediator
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The dark photon model

TDS =0.5GeV TDS = TlC)S TDS =0
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Add a U(1)p to the SM gauge groups. Its gauge boson, the “dark photon”, gets
massive when a “dark Higgs” obtains ¢ # 0. Effective potential controlled by the
tree-level VEV v, dark Higgs quartic coupling A and gauge coupling g .



Strength and time scale of the transition

Analyze the phase structure and determine the strength o and inverse time scale
B/H. Vary quartic coupling A and gauge coupling g to identify region of strong
and slow transitions. Consider case of dark higgs mediator.

log; B/H




The temperature ratio’s impact on « and 3/H
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Seff,p

Transition strength «

100
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The transition strength « increases o &,
but only until the Universe is completely
dominated by the dark sector! Then, the
temperature ratio becomes irrelevant.
The inverse timescale is virtually
independent of &,.



Influence of VEV v, dark Higgs lifetime 7, and temperature ratio £ on GW signal
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Benchmark point study
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- Hot dark sectors are loud

- Long-lived dark sector decays
can dilute the signals

- Presented effects are largely
model-independent

- Cannibalism in the dark sector
is relevant

- LISA and ET can partially test
f /M the U(1)p parameter space
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Thank you very
much for your
attention!

Do you have any questions?

[5fe
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Describing the dark sector in equilibrium

For several dark sector species in thermal equilibrium: can define effective DOFs
SM DS 4 ™ 4
prot(Tsm) = [geﬁ,p(TSM) + gort p( Tsm) & (TSM)] 30 Lsm
2 72

sn(Tn) = [a88(Tom) + 985, (Tsw) € (o) 20 73,
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Describing the dark sector in equilibrium

For several dark sector species in thermal equilibrium: can define effective DOFs

2
™
prot(Tom) = [ggf“ép(TSM) + ggf?,p(TsM)ﬁ‘l(TSM)] 30 S

272

sn(Tn) = [a88(Tom) + 985, (Tsw) € (o) 20 73,

As entropy is conserved separately in the two baths, the temperature ratio follows

gS# 1/3 ng? 1/3
&(Tom) = € (s) ( Es’s)
geﬂ‘,s geﬂ’,s

When SM particles annihilate , £ decreases.

When dark sector DOF decrease , £ increases.
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Describing the dark sector in equilibrium

SM tot _
8eff et for £=2
Sotts 8ekis
— gg}\f/,lp St
10% 4 E
10! 4 E
T T T T T T T T
10° 10° 10° 103 10° 10° 10° 103
Tom / GeV Tom / GeV

Example: Thermal evolution of a hot (¢ = 2) dark sector consisting of a dark

photon (mpp = 10° GeV) and a dark Higgs boson (mpy = 10* GeV).
14



The out-of-equilibrium decay of a dark mediator

Evolution of the lightest dark sector state
(“mediator”) after chemical decoupling:

Pmed a3 / GeV*

Pmed == —3C H pmed — I pmed

with
E \
E \
C =1+ 4Pm8d — 4/3 rel. Boltzmann eq. \
Pmed 100 _ — = Approximation "
T T T T T
107 108 10 10* 1072 10°

Three phases: Relativistic, t/T

and decaying mediator
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The out-of-equilibrium decay of a dark mediator

Number-changing processes of the Four phases: Relativistic, cannibalistic,
mediator lead to a “cannibalistic” and decaying mediator
phase with pmeq = 0. Therefore, the
unique function pmed(smed) exists. Ped [ GV med @/ GV
I I v I I v

We found: 107 ] 10° ]

dl . ) >

CMPmed 3, 9 efficient 10° 5 10° 5

1 3 — 2inefficient 103 103
During cannibalism, ¢ goes smoothly mm_,m o o mw_,m o

t/t t/T

from 4/3 to 1.



The out-of-equilibrium decay of a dark mediator

Dsm

Dsm N
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Parametrization of the GW signal

Assuming strong' phase transitions, the GW spectrum can be parameterized by

0<10—6>< a >2</3>2 B8U/)*° L here

H 1+28(f/f)38"°

h? Q ~
awlf) DA/3 I+« H
SM,n
g2 O(Hz) (B [ Ti
D = —— Dsp and fo~r——— | =
g P~ pus \H) \100Gev

~» GW spectrum fixed by the transition strength «, the inverse time scale 8/H ,

the nucleation temperature T¢,, and the dilution factor D

'This is only to get an intuition, the actually performed calculations are more involved



Parametrization of the GW signal

HQew(f)

Qcw(f)
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Parametrization of the GW signal

108
— B/H=10
10710
== B/H=10°
10-12 e s B/H=10*
R ~

How do all these effects sum up?

We'll have to consider a specific model!

10~ 18
10~ 20
102
*3 10

- 10‘
f/Hz
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Cross-over and first-order phase transitions

Cross-over phase transition First-order phase transition

s s

5 3

| / I

s =

X N

0 o 0 v
¢ ¢

The scalar field “rolls down” from ¢ = 0 The scalar field tunnels to the true
to ¢ = v, when the bath cools from high potential minimum (¢ # 0) to minimize

temperatures to low temperatures. its action (~ free energy).
20



First-order phase transitions in thermal field theory

To demonstrate construction of Veg(o, T), take the toy-model Lagrangian...

L= 5 (049) (9"0) ~ Vieel9)
With  Viree(9) = _%H2¢2 + %¢4

.. and consider all 1-loop 1-PI graphs:

o PO SO |

20



First-order phase transitions in thermal field theory

And calculate 1-loop effective potential with m?(¢) = 07 Viree(¢) = —p* + 3A¢°

4
Veg(6, T) = % / (27:33 log [+ m2(¢)]  with K being %-periodic

S CORE.
_ /k[E2+Tlog{1—eE’“/T}]

= Vew(¢) + Vi(o, T)

Interpretation: Viee is the classical energy density contained in a background
field ¢, Vew(+ V7) is the vacuum energy density of a quantum field living in this
background, which is completely analogous to the zero-point energy of a
harmonic oscillator (in a thermal bath)

with By = /&2 + m2(¢)

20



First-order phase transitions in thermal field theory

Vi = / T]Og {1 _ e—Ek/T} First-order phase transition
k
_ T Thig)  Twi(9) | S
- 90 24 2r X
|
However, around T, Ve is dominated by =
> 1-loop effects. “Daisies” dominate: N
Vaisy = — 15— [ (m?(@) + 11(T))™* = 3 (9)] 0 5
y 127 ¢

And cancel the potential barrier in Veg. But:
Transversal gauge boson component doesn’t
acquire II(T). ~» Gauge bosons can save
potential barrier and thus FOPTSs.

20



First-order phase transitions in thermal field theory

Summary:

V;];rloop(ﬁb: T) = Vtree(¢)+ VCW(¢) + Vct(d)) + VT(¢a T) + Vdaisy(¢> T)

Coleman—Weinberg/

1-loop thermal Daisy ! corrections,

otential and its . .
P corrections dominate at T¢

counter-terms

How to get a thermal FOPT?

- Need scalar charged under gauge group with massive gauge bosons
- Dominant Viee + Vew contributions can always destroy potential barrier,
though ~~ as in SM with too high my, forbidding FOPT
20



First-order phase transitions in thermal field theory

l 100p(¢7 ) Viree + Vow + Ve + Vr + Vdaisy

has the individual contributions
ma(9) [, mi(e)
Vew(o) = an Ny 64 72 [ln A2 Ca:| )
2(¢>)
7 2 2 an na: Nz < > 9

% i [(m2(0) + (1)) — (m?(6))?"”]
b

Vdaisy(¢a T) = -

20



Thermal functions

2

30 — Re Jpos(z

N ~—

)

20 1 — ReJem(z

—10 1

—20 1

-80 -60 —40 -20 0 20 40
2 = m2/T?



Bubble expansion

Euclidean action of scalar field
1/0 2
5161 = [ dm [2 (22)'+ T2 varto

Minimizing for O(4)-case gives

d?¢  3d¢ ,
a2 + bdp eff(9)
At finite T and in real space:

d?¢ 2 d¢ ,
ce - T
dr? o rdr er(® T)

Can be solved by overshoot-undershoot method

20



Bubble formation and thermal tunneling

Nucleation rate: T' = Ae~%* with 26 3dé  dVis
1 /de\2 1 a2 pdp
si= [ 5(52) +5(V6F+ Ven(0) 0"
T In 3-space: r = |x| = /p? + 212 ~

and A ~ T*. Extremalization yields KG Nucleation and expansion with v — ¢

equation with classical potential source:

d%¢ A Ve
e B
with b.c. ¢(p — o0) — 0 and R

¢'(p=0) =0where p= /72 +|x]%.
Solutions typically O(4) symmetric: .

20



Temperature dependence of potential minima and bubble profile

v 'ﬁ $Pmax 7

20



Nucleation criterion

S3(T)/T

The nucleation condition I'(T,) H~4(T},) = 1 gives

So(T gt (T T
5(7) ~ 146 — 2 In Gettp( Tn) —4ln< n >
T |r_r 100 100 GeV

Can be solved by repeated evaluation of S3/T and subsequent minimization.

20



GW parameter calculation

Radiation energy density at nucleation

2
™ SM, DS, 4
PR = 30 <geﬂ-"7; + geﬂ":) 54) (TSnM)

Transition strength

1 OAV
PR or Ths
Inverse time scale
é — Tﬂ dSE(T)
DS

Critical transition strength for runaway bubbles

.)? Am2 Am2
o OO (2 50 2 )
i=bos i=fer

PR
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SGWB model

() = -0 S v () ()

Scalar field Q4 Sound waves Qs Turbulence Qb
N 1 1.59-107" 2.01-10"
K K¢ Rsw EturbRsw
3
q 2 1 1
0.11v3
A 0.42 1 02 Y Y
f 0.623 20 3.58
P 1.8 — 0.1v, + v3 V30w 20y

2.8 7/2 3
o) 3ULR) 7 )2) (/5

s VR (rrsi (L5 7/F)" (L + 82/ ) .




Experimental sensitivities

h? Qe (f)

1075 -
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10—11 4

10714 4

10—17

1073
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10°
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BBO
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10714 4

10—17
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Effective degrees of freedom

pa(Tz) 15 [ ulul - 22
(T = LT 15[, Vs~
o) = e, e ), e
g (T = —2eTe) 15[ (2 - 22)"?
Fp(le) = o = 9o 3 s
¢ ngls(Tx)‘gzl /., et +1
T 3ggﬂc,p(Tx) + gea):ﬁ“,P(TI)
geff,s(TI) = 4 R
where u, = \/m2 + p?/ T, and 2z, = m,/T,. Sum over all SM and DS species:

9% » = Gett o (Tsm) + gog (o) €*(Tsm)
96t = Getts(Tom) + 9o o( Tsm) € (Tsm)
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Mediator cannibalism

Conserved comoving mediator entropy smeq @ = const gives

dIn sped o dIn smed Prmed _

= =-3H(t),
dt d1n pmed Pmed ®)
from which follows that
. d1n pmed
=-3——H(¢ t) .
Pmed 3 A1 $meq ( )Pmed( )

For pimeq = 0, one can find function pmed(smed), iIndependent of particle species:

d1n ped _ dpmed Smed _ dPmed Smed _ dIn pred _ dlnp
dIn spmed dSmed Pmed dSmed Pmed dIn Speq dlns

With Speq = 27 Smed/ (9med Tgs) and preq = 27° Pmed/ (gmed TSS)-

20



Mediator cannibalism

That yields
Pmed = —3C H pmed — I pPmed
with
dlnp
dling (Pmed) for Tnc(t) > H(?)
¢(t)=144/3 for Tnc(t) < H(t), t<1 -
1 for Tnc(t) < H(t), t>1

where t = 7 tq (T,Sg'/mmed)2 denotes the time when the mediator gets
non-relativistic. Number changing process rate is approximated by

Fne > T'gp =~ (032 U2> n%]ed

20



Mediator cannibalism

The averaged cross section reads

where

for a potential V(¢) =

255 a3
<U32U2>_fasz+0< Tos )

30727 m) Mimed

m m

o = ()" ()" +3m]

m2

2

— P+ %(;53 + %¢4. In our model: azz = 2.3\

20



Coupled set of ODEs underlying

e entropy injection

1 a fmat | frad ¥ S
a +7 —_1 b
9H at v G/
rat
§'=-—G" 1,
frad
a/
r':—r—3jg‘r,
, 3 T G6 48a' —S'a

4 S3/4 4 Tcd Q81/4 +3g4/3

I _ 4 e 3GaS'—12Ga’S—4G' aS
T =T s 12G4/3 §3/4 32

with initial condition @,g = S¢q = 7eg = Geg = 1 and
Yed-

- Normalized scale factor a = a/acq

. ietic ti _  [2a.,,2 12,
Characteristic time scale 8y = 3mg T pﬁned

- Normalized mediator energy density

d
T = Pmed /pfned

- Normalized initial DM density fmat = pDM/pmed

- Normalized initial radiation energy density

frad prad/pmed

+ Normalized DOFs y = g3ff p/geﬁé

- Normalized DOFs G = g2n S/gSM’Cd

eff,s

. d\4/3
- Normalized SM entropy S = (SSM/SSM)

20



Redshift and dilution of the GW background

After its emission, the GW signal gets red-shifted:

W’ Qow(f) = RE® QQy ( % f)

Energy density: Frequency:
smMo\ 4/3 totn 1/3
-5 ) , SM,n
'R,h,2 ~ 2.4-10 (ggf’\;,s ) geff,p ap D1/3 <geff,s > TSnM
N 2 — = om SM,0 0
D;ll\/,? Geff,s an et s TS
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Parametrization of the GW signal

108

107\()
Transition strength: S,
o
o = = 10-18
n

Prad 10-20
relates the latent heat e of the transition "
with the energy density pj,4 of the 10 4
surrounding heat bath. For fixed T: _—
~ 10 14
Py o &% The transition strength thus e
grows o &1 = o]
1020

1072 T T T T T T

10-° 103 10! 10! 10-° 103 10! 10!

f/Hz f/Hz
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Parametrization of the GW signal

108

— B/H=10*
== B/H=10°
4 P’/H:ll)‘

Inverse time scale:

The computation of 8/H is complicated,
but shows no relevant dependence of
the temperature ratio between the
sectors. Larger 5/ H indicate fast
transitions. In that case, many small 102 i
bubbles collide, resulting in weak signals
at high frequencies.

T T T T T T
10-° 103 10! 10! 10-° 103 10! 10!
f/Hz f/Hz
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Parametrization of the GW signal

— B/H=10*
== B/H=10°
4 e B/H =104

Nucleation temperature:

Keeping T{s fixed, a larger temperature
ratio &, at nucleation leads to a lower
Tdw- This corresponds to lower peak IZ memey )]
frequencies. S

23



Parametrization of the GW signal

108

— B/H=10%
== B/H=10°
4 P’/H:H)J

Dilution:

The redshift to lower frequencies and
signals strengths increases with the
dilution factor. D grows with the

temperature ratio &,, as more energy is — - 10 Gev — -0
10771 —— M =10'Gev | ] -= D=10'

injected into the SM bath from the dark 101 | o ce | o D=0
sector. Unlike Dsy, D saturates for high
temperature ratios.
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The U(1)p model in detail

Lagrangian:

1
£ D, % +|D, HI - ; B, B* —%B;w B — V(®, H),
D,®=(d,+igB,)®,

Viree(®, H) = —p2 @* & + N (®* ®)? — p4, H' H + Ay (H' H)? + )\, (®* @) (HT H) .
Mass spectrum:
A
) —u%{+3AHh2+7”¢2 Ap b
M, g (b @) = 2 2, Ap,a|’
Ap h —pt 3G+ oh
A
mgo g (h 6) = —pgy + A B+ 267,

A
2 _ 2 2 P2
mcp(h'7 QS) =—p+ )‘¢ + 2 b= . 2%



The U(1)p model in detail

For Ay, e — 0 and p? = XA +?, the field-dependent dark Higgs and dark photon
masses are given by

mop =96 = gv, mon = V2Xé = V2Au.

The corresponding Debye masses are

A 92 2 L 92 2
H(}(TDS) - - + - TDS B HA/(TDS) - — TDS .
3 4 3
- Quartic dark Higgs coupling: A . ~ o —
. Dark Higgs VEV: v = \%
- U(1)p gauge coupling: g Tos

- Temperature ratio: &, = Ter
n

- Dark Higgs lifetime: 7

24



Signal-to-noise ratios for LISA and the ET

Compute the overlap of the signals k% Qew(f) and expected sensitivities h% Qops(f)
and weight it with the duration of the observation #,,s to obtain a signal-to-noise

measure:
e [P 960
2 _y / d |: GW }
P 0bs fnin / h? Qobs(f)

If p exceeds a certain threshold value for a given signal, the signal is observable.

To analyze the impact of &, and 7 on the observability of the signals produced by
our model, consider the benchmark points

Benchmark point \ A g v
LISA 1.5-107% 05 2TeV
ET 1.5-107% 0.5 10PeV
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Final temperature independent of all input parameters except lifetime

Tin / GeV T / GeV

10° 10° 3
10° 10°
> 1] > 14
& 10 w02 § 10 1072
~ ~
52 104 2 1074
1 ] -1
¢% 10 §§ 10
10 106
1073 4 1073 -

10°

1072
104
1070

1077 1073 10" 10° 1077 1073 10" 10°
T/s T/s 24



Our extensions to CosmoTransitions

Structure:

my_scan.py

'

scanner.py

PN

my_model.py

'

generic_potential.py

R T

dilution.py

observability.py

geff.py transitionFinder.py

Example output:

LISA BP, gOg-BeM = 4, v,, = 1, xtol = 1078, {

logyo @ logyo Tolt / GeV

10*
Enue nuc

log10 SNR for LISA
0.75

0.50
0.25

0.00

10*

3
Snuc

f— H(Tow) —— H(Top) —— H(Toud)

2.0

2.0
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